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In Metaphysics, in Science, and in Conduct,
most of the arguments, upon which we
habitually base our rational beliefs, are
admitted to be inconclusive in a greater or
less degree. Thus for a philosophical
treatment of these branches of knowledge, the
study of probability is required.
(John Maynard Keynes, “A Treatise on
Probability”, 1921.)



Preface

The careful reader will note that the word ‘statistics’ does not appear in the title of
this book. Althought Part III does cover the subject of Statistical Inference, this book
is both more than and less than a textbook on Statistics. It is more than a Statistics
textbook, in that it’s purpose is to discuss how the concept of probability is central to
modern physics, and how frequency distributions and probabilistic concepts arise in
a wide range of physical problems. I discuss things you won’t normally see in
Statistics textbooks such as Information Theory and Quantum Measurement. On the
other hand, it is less than a Statistics textbook, in that it is not a cookbook; it is quite
brief on how to apply statistical techniques in model fitting and so on. You won’t
find a step-by-step explanation of how to do analysis of variance.

Aims of the Book

(a) I want the reader to understand the basic principles of how probabilistic con-
cepts are used in physical problems. You won’t find all the gory detail you need
for applications in industry or research, but once you understand the principles,
advanced technical works should be easier to follow—and to critically assess.

(b) I try to strike a sane balance between the “Bayesian” and “Frequentist”
approaches to statistical reasoning. My experience is that to mathematicians,
this division is a bit of a non-issue, but that Physicists and Astronomers still
tend to treat it as kind of holy war. I take the attitude that you certainly can and
should assign sliding-scale degrees-of-belief numbers to hypotheses, and adjust
them according to the evidence; but also that it is often helpful to use the ideas
and methods of significance testing. It’s all fine as long as you are aware of
what you are doing.

(c) As in my last book, Astronomical Measurement, I try to supply the missing
middle, for my own benefit, but hopefully also for the benefit of the reader. For
example, statistics books tend to be either simple cookbooks, which never
really prove or explain anything, or rather terrifying full-blown mathematical

vii



textbooks. There seems to be no bridge between the two. Likewise, some of the
topics I cover, such as Quantum Entanglement, are covered either in
hand-waving semi-popular articles, or in very detailed research papers, with the
former really not preparing you for the latter. Where feasible, I try to give
mathematical proofs, but really my aim is boiling down and de-mystifying.

An Overview of the Book

The book is in four parts, each with several chapters. In Part I: The Basics we start
with a discussion of what probability is, where randomness comes from, and how to
do probability algebra. We then take a look at probability distributions, moments,
expectations, and how to deal with more than one random variable.

In Part II: Frequency Distributions in the Physical World we begin with the
underlying ideas of combinatorics—how we count the different ways of doing
things—and then move on to see how following that logic leads us to two important
distributions that occur throughout the natural world—the Binomial and Poisson
distributions. Next, we look at the single most important natural distribution—the
Gaussian or “normal” distribution—and discuss how it arises as a quasi-universal
distribution through the combination of many different random factors. We also
look at how some distributions are Gaussians-in-disguise, for example, the
Maxwell–Boltzmann distribution, and the log-Gaussian distribution. Finally, in
Part II, we look at distributions that arise through random processes in time—
random walks, shot noise, the Lorentzian, and power law distributions.

In Part III: Probabilistic Inference: Reasoning in the Presence of
Uncertainty, we study the ideas and methods of statistical inference. Whereas in
Part II, we learn how to calculate the expected observations from our knowledge
of the physical situation, now we learn how to work backwards from observed data
to the physical situation. First, we look at the basic ideas of hypothesis testing,
emphasising the central role of likelihood, and using both Bayesian and
significance-testing methods. Then we look at how to estimate a parameter, seeing
it as a tuning knob that produces a continuous range of hypotheses, and how to
calculate an uncertainty range on our estimate. Next, we look at how to assess the
relationship between two variables, calculating our degree of certainty on whether
they are connected at all, and learning how to produce “best fit” lines that model the
relationship between them mathematically. Finally, we move on to more general
model fitting, examining numerical methods of finding best fits in a multidimen-
sional parameter space, and looking at the notoriously confusing issue of different
types of multi-parameter uncertainty intervals. (Its not so confusing really!)

In Part IV: Selected Topics, we look at four selected areas of Physics, or the
natural world more generally, where the role of probability is particularly important,
interesting, or controversial. First, we look at Information Theory, stressing how it
is at root just a different way to look at probability, but with very interesting
implications and applications. These ideas are at the core of modern information
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technology. Next, we take another look at stochastic processes, and the problem of
how to treat the erratic semi-random variations in time that we see throughout
Nature, from quasars to the stockmarket. Following this, we look at Quantum
Physics, the emergence of true randomness in the macroscopic world, and the rather
strange way that probability works through complex amplitudes and partial cor-
relations. We attempt to demystify Quantum Entanglement and Bell’s Theorem, but
make no claim to have solved these deep mysteries! Finally, we examine another
area that seems to be enduringly controversial—the relationship between Entropy,
Complexity, and the Arrow of Time. As with our look at Quantum Physics, our aim
here is to simplify and demystify what other authors are talking about, without
claiming to arrive at a final solution.

Exercises

Each chapter concludes with a set of exercises. These are mostly of the “plug-in”
variety, rather than being factual or conceptual. The idea is that if you have fol-
lowed the material you should be able to do these exercises, but if you haven’t
followed they will seem mysterious. Solutions are provided. If you are using the
book as part of a structured course, then doing the exercises is highly recom-
mended. Even for a general reader, it can be useful to take a look, as the solutions
sometimes spell out things more slowly that may be a little condensed in the text.

Edinburgh, UK Andy Lawrence
June 2019
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Part I
The Basics

In this first part of the book, we investigate what it means to be random, what
probability means, and how to deal mathematically with random variables that may
represent real quantities in nature. We meet the idea of a probability distribution;
discuss how we can characterise the shapes of such distributions; and look at how
we can capture mathematically the idea of “error”. These basic techniques set us up
for the later parts of the book.



Chapter 1
Randomness and Probability

1.1 Outline of Content

• The origin of unpredictability
• Probability as frequency
• Combining probabilities
• Probability as degree of belief
• A look ahead

The ideas of probability and statistics allow us to discuss situations in Nature that
we cannot fully describe or predict. Ideally, this would not be necessary. Underlying
classical physics (as opposed to quantum mechanics) is the belief that natural events
are deterministic—that one event is strictly caused by another. If we know the starting
condition of a system, and the physical laws that govern it, then we can “turn the
handle” and exactly predict its condition at all future times. In fact we can look back
in time and know exactly what the condition of the system was at all times in the
past. Real life isn’t normally like this however. If I plan to measure the velocity of a
single molecule in a box of gas (perhaps using some particle counting time-of-flight
device) I cannot tell you what value I will get. However, this does not mean that I
can say nothing. If I know the temperature of the gas I can have a good idea of what
values are likely and what values are unlikely. What do I mean by ‘likely’? Can we
sharpen that idea up? We will need to examine three closely related but not quite
identical ideas—determinism, predictability, and randomness. Let’s start by looking
at where unpredictability comes from.

1.2 Where Does Unpredictability Come From?

The concepts of unpredictability, randomness, and probability are closely related but
not quite the same. The idea of unpredictability is the least ambiguous, so lets look
at that first. Unpredictability can arise in several different ways.
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4 1 Randomness and Probability

1.2.1 Incomplete Knowledge

Sometimes we simply don’t know everything about the state of a system. If we roll
a die,1 in principle we could predict the side that will land face up. We would need
to know the size and density of the die, the angle and velocity at which we throw it,
and the friction of the surface it lands on. But in reality we don’t know some of these
things, so the number rolled is not in practice predictable.

1.2.2 Large Numbers

Any reasonable volume of gas contains an extremely large number of atoms. With
the best will in the world we will never know the velocities of all the atoms. As far as
any observer is concerned, the individual velocites are unpredictable. However, this
doesn’t mean we know nothing. What we see in Nature is that the relative numbers
of atoms with different relative velocities follows a very precise law. In fact the
exact same law applies to lots of other apparently unrelated things in Nature, like
the distribution of heights of people. In Chap.5 we will look at how to explain this
strange universality.

1.2.3 Sensitivity to Initial Conditions

Suppose two systems are identical but with the initial conditions differing by a
small amount. What happens as these systems evolve? In some systems the tracks
converge, i.e. the difference gets smaller. But some diverge—the two systems get
further apart. This makes the system predictable on short timescales but effectively
unpredictable on long timescales, because we can never know the starting conditions
accurately enough to keep our prediction on track. (This is the famous “butterfly
effect” in climate modelling). Some systems end up bouncing erratically between
values—this is the phenomenon of dynamical chaos.

1.2.4 Open Systems

Another practical problem is that we may know everything about the system we are
trying to study, but it is not a perfect closed system—it may be subject to external
influences. For example, the trajectory of a tennis ball may in principle be simple,
even including the effects of air friction, but not if it’s windy. Events starting a long

1The first of many controversial issues we shall face is whether the singular of dice is die or dice! I
have taken a fairly arbitrary decision...
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wayoutside the tennis court—for example, a depression over theNorthAtlantic—can
end up changing the behaviour of the tennis ball.

1.2.5 Quantum Mechanics

The theory of quantum mechanics proposes that the Universe is not after all
deterministic—events at the microscopic level are intrinsically unpredictable, dif-
ferent every time we look. As well as helping to explain the strange behaviour of the
quantum world, this can have consequences in the macroscopic world—the times at
which a lump of radioactivematerial emits an alpha particle cannot be predicted. His-
torically, some scientists have been uncomfortable with the intrinsic unpredictability
of quantum mechanics, suggesting that there must be “hidden variables” that we
don’t yet know about, that would restore Nature to being deterministic. This is is a
question which is in principle decidable by experiment. We will look in more detail
at these issues in Chap. 13.

1.3 Randomness and Probability

We have seen that situations can be deterministic but still in practice unpredictable.
What does it mean for an event to be random? You will encounter subtly different
usages of this word. We will take it to mean “intrinsically unpredictable”. Then
situations where events are in-practice unpredictable can be treated as if they were
random, and we can use the mathematics of probability theory to have rational
discussions about uncertain events. If you are a determinist, you could take the
attitude that the probability theory is a mathematical abstraction which we can use
to discuss things which in reality are never truly random. Alternatively, you might
care to believe that unpredictability is the true Nature of reality, with the apparent
determinismof themacroscopicworld being a kind of illusion. These are deepwaters!
Luckily, we can develop our theory and solve practical problems without having to
come to a decision on these philosophical issues.

You will sometimes see the term “random” used to mean, that of all the possible
values that an event might have, each is equally likely. This is not what we will mean
by “random” in this book. If you roll one die, the numbers 1–6 are indeed all equally
likely, but if you roll two dice, the various summed values are not equally likely. We
want to use the term “random” for both these experiments. Below, we spell this out
more carefully.

Putting quantum mechanics to one side for now, is it the case that randomness
is subjective? Person A might in principle know everything necessary about some
system, whereas Person B lacks some knowledge and has to treat it as behaving
unpredictably. But this doesn’t mean that randomness is woolly and not physical.
Its a fact of life that sometimes we have incomplete knowledge, but we still want to
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have some way to have a rational discussion. “Subjective” here just means “observer
dependent”. Later on we will see how to adjust probabilities numerically when our
knowledge changes. Furthermore, when considering for examplewhat the velocity of
a particle in a box full of gas will be, every plausible observer is in the same situation,
and we can make very concrete and reliable statements about, for example, the
distribution of velocities in a gas.However, the underlying subjectivity of randomness
does mean that you have to specify the problem you are considering very carefully.
Confusion in statistics often arises because there are some background assumptions
that haven’t been spelled out.

So what do we mean by “probability”? It’s a concept that tries to answer ques-
tions about the future. Imagine standing in front of an experimental apparatus, about
to make a measurement, and wondering whether you will get a particular value x .
Based on what you have seen in the past, and know about your experiment, what
is reasonable to expect? Historically, the word “probability” has been used for two
different concepts related to this problem—either the frequency with which unpre-
dictable events occur, or the degree of belief that some hypothesis is correct. These
approaches are known as the “frequentist” and “Bayesian” approaches to probability
theory. There have been long and heated debates between these two camps, but in
fact both approaches are useful, and indeed as we shall see later, we can combine
themmathematically. It is very useful to understand both approaches. The frequency
approach gets us to the key mathematics more quickly, so lets look at that first.

1.4 Probability as Frequency

It is useful to startwith the idea of a randomvariable. This is a quantity X whose value
is different each time you enquire of it. (Or rather, could be different—sometimes you
may happen to get the same value twice in a row.) This enquiry usually involves some
kind of event which is the outcome of a measurement or experiment. For example,
we roll a die and note the number which lands face up. It can sometimes be useful
to distinguish between the event (seeing the face with a six land upwards), the value
attached to the event (X = 6), and the list of possible outcomes (X = 1, X = 6 etc).
Sometimes an event may be a compound event made up of elemental events. For
example we might roll two dice and look at the total on the two dice, and could see
this as equivalent to combining the results of rolling a single die twice. The variable
can be discrete, such as the number rolled with a die, or the number of heads out
of nine tosses of a coin; or continuous, such as the velocity of a gas particle or the
height of a person. Usually we will use upper case for a discrete variable and lower
case for a continuous variable.

1.4.1 Frequencies

Although we cannot predict the outcome of a single specific measurement, we can
note the number of times various values come up. Supposewe perform an experiment
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that has n different possible outcomes, which we can label Xi , where i = 1 to n. The
set of all possible outcomes Xi = X1, X2, . . . Xn is known as the sample space
S—for example when rolling a six-sided die, the list of possible outcomes is S =
{X1 = 1, X2 = 2, . . . , X6 = 6}. Suppose now we run the experiment a total of N
times, giving a long series of data values, which we can label xk , where k = 1 to N .
Each run of the experiment gives a data value which is equal to one of the expected
outcomes. Suppose nowwe count how often xk = Xi , and find that i th outcome Xi is
seen Ni times. Then the set of Ni values can be referred as the observed frequencies
and the normalised observed frequencies are given by oi = Ni/N . Note that

n∑

i=1

oi = 1.0.

If the total number of experiments N is large enough,wemight hope that our observed
frequencies oi converge on a set of values fi that characterise the experiment we are
carrying out. These numbers, seen as a function of the Xi outcomes, define the
normalised expected frequency distribution fi (Xi ), or just f (X) for short. In some
cases we can predict what f (X) should be. For example, for our rolled die, assuming
that the die is unbiased, we can assume that each outcome Xi = 1, 2, . . . 6 is equally
likely—so we expect that fi = 1/6 for all the possible outcomes. Of course, in real
finite experiments, the observed oi values won’t be quite the same as the theoretically
expected fi values. In Chap.2, we will take a closer look at the difference between
observed and expected frequency distributions. Note that both oi and fi always sum
to 1.0.

In many cases, the fi for the various outcomes Xi won’t all be the same. However,
we can work out the expected fi values by considering our events to be compound
events made up of elemental events which are themselves equally likely. The idea is
illustrated in Fig. 1.1. Suppose we roll two dice. The set of all elemental outcomes is

S = {(X,Y ) | X = 1, 2 . . . 6, Y = 1, 2 . . . 6}

i.e. the set of all 36 pairs of values X,Y such that X can be any of 1–6 and likewise
for Y . But suppose we are interested in how often we get a given total T = X + Y .
The set of all ways we can achieve the event T = 8 is

S8 = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}.

This is 5 out of the 36members of the full set of elemental outcomes, so the frequency
withwhichwe expect the event T = 8 is f (T = 8) = 5/36.Wehave assumed that all
the elemental outcomes occur with equal frequency; but the various possible events
T do not occur with equal frequency. There is only one way of getting a 12, and no
ways of getting 1.
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Fig. 1.1 Left: Sample space of elemental outcomes for rolling two dice. The green (lower) ring
shows the set of all outcomes that give a total of T = 7, and the red (upper) ring shows those that
give a total of T = 5.Right: Frequency distribution n(T ). To turn this into the normalised frequency
distribution, we would divide by 36

1.4.2 Using the Frequencies as Probabilities

The frequency distribution f (X) is then what you will find in the long run over many
repeated measurements or experiments. From the viewpoint of a single measurement
or experiment, the same function tells us the probability that we will get a particular
value X . As you wait for a measurement to take place, you could imagine many
potential realisations of your experiment. What fraction of the time does a particular
value occur in those imagined realisations? We can then think of the expected nor-
malised frequency distribution f (X) as the probability distribution P(X). Part II of
the book is essentially about how we can work out what the probability distributions
P(X) should be in various different physical situations.

1.4.3 Continuous Random Variables: Frequency Densities

If we have a continuous random variable x , then the fraction of times we get exactly
x is of course infinitesimal, so instead we have to define the normalised frequency
density f (x), defined such that the fraction of times we get values in the range x to
x + dx is f (x)dx . (See the illustration in Fig. 1.2.) Just like for discrete variables,
the frequency density functions for continuous variables are properly normalised if∫ +∞
−∞ f (x)dx = 1.0. Likewise, analogously to discrete variables, we can use past
observed or theoretically expected frequency densities as our estimate of probability
density p(x). The function p(x) is known as the probability density function (PDF).
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Fig. 1.2 The curve
represents some frequency
density f (x). For small dx ,
f (x1)dx is the probability
that x is in the range between
x1 and x1 + dx . The
right-hand shaded area shows
the probability that x > x2

1.4.4 The Importance of Relative and Integrated Probabilities

The absolute values of probability or probability density are often not very useful,
and what we need are relative values, or values integrated over a range.

For example, suppose you have an urn (statisticians love urns!) containing N
balls. One ball is red, two balls are green, and the rest are white. The probability of
picking a red ball is roughly 0.0833 if N = 12 and 0.00114 if N = 876, but in both
cases you are twice as likely to pick a green ball as a red ball. So you can see that in
this case the ratio of the probabilities is much more useful than the absolute values;
this very often turns out to be the case.

For continuous random variables, the probability density depends on the units you
choose. An example is the distribution of human heights. For example, a table given
by the US Centers for Disease Control (CDC; see “Further reading” in Sect. 1.9)
shows that the average female height in the USA is h = 162.1cm, or if you like
1.621m. The probability density function p(h) has a typical “bell curve” shape with
a characteristic spread of about ±9.8cm (we will be more precise about this shape
in Chap.5). The density of probability near the average depends on the units you
choose—its about 0.041 per cm, or 0.0041 per m, or even 0.016 per inch if you
prefer. However, if you ask “what fraction of women have a height h > 169cm?”
you will find

F =
∫ ∞

h
p(h) = 0.15,

and the answer is the same whether you measure h in metres, millimetres, inches, or
light-years. When we come to studying statistical inference, this lesson that either
the ratio of probabilities, or the integral of probability over a range, is more useful
than point density values, is particularly crucial.

The integral of the probability density function p(x) is sometimes known as the
cumulative distribution function (CDF) F(x).
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1.5 Combining Probabilities

If we know the probabilities of two events A and B, what is the probability of getting
both A and B? Or of getting either A or B? To answer such questions, we have to
be quite careful about specifying the experiment we are conducting. We also have to
decide whether the two events are dependent, and whether or not they are mutually
exclusive. This is easiest to see if we step through an example.

1.5.1 Probability of A and B

To get the probability of A and B, we need to know whether the two events are
dependent or not. Suppose we have a pack of 52 playing cards with four Aces, and
we pick a card at random, twice. A is the event of getting an Ace in the first pick;
B is the event of getting an Ace in the second pick. However, we could do this two
different ways:

Experiment-1. After the first pick we put the chosen card back into the pack and
shuffle it, before making the second pick. In this case, the two events A and B are
independent—to know the probability of picking an Ace in the second pick, we don’t
need to knowwhat happened in the first pick. If we imagine doing the first pick many
many times, we will get an Ace a fraction 4/52 = 1/13 of the time. In the second
pick, we will get an Ace again for a fraction 1/13 out of the cases where we got an
Ace the first time. So, fairly obviously we have

P(A and B) = P(A, B) = P(A) × P(B).

Experiment-2. After we have picked the first card, we put it to one side before
making the second pick. Then the probability of getting an Ace in the second pick
clearly does depend on what happened in the first pick. If the first pick was not an
Ace, then P(B) = 4/51. If the first pick was an Ace, then P(B) = 3/51. To express
the probability of B given that A already happened, we write P(B|A). This is known
as a conditional probability and can be read as “probability of B given A”. In this
more general case we have

P(A and B) = P(A, B) = P(A) × P(B|A). (1.1)

Note that if A and B are independent, then P(B|A) = P(B) and (1.1) becomes the
simple P(A) × P(B) formula.

We have stepped through this simple example rather laboriously, but its good
practice; the most common source of error in thinking about probability problems is
rushing things. The key lesson is that you have to define your problem very carefully.
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1.5.2 Combining Continuous Variables

Note that the same logic works for probability densities. If we have two continuous
variables x and y we can define a joint probability density p(x, y) such that the
probability that x is in the range x to x + dx and y is in the range y to y + dy is
p(x, y)dxdy. In general p(x, y) might be some complicated 2D function, but if x
and y are independent, then it decouples into separate functions for x and y so that

p(x, y) = f (x)g(y),

where f (x) is the PDF for x alone etc.

1.5.3 Bayes’s Theorem

The conditionality works both ways, so we can write either

P(A, B) = P(A)P(B|A) or P(A, B) = P(B)P(A|B).

Equating the two versions and re-arranging, we get Bayes’s Theorem

P(B|A) = P(A|B)P(B)
P(A)

. (1.2)

As it stands, this is a fairly innocuous re-statement of the laws of probability,
and is sometimes useful for practical calculations. However, it re-appears in a more
interesting way when we come to talk about statistical inference later in the book.

1.5.4 Probability of A or B

In this case, the probability of getting either A or B depends on whether A and B
are mutually exclusive, i.e. whether or not it is possible for both events to occur. For
example, suppose A is the event that the Scottish football team reaches the final of
the football World Cup, and B is the event that Wales reaches the final of the football
World Cup. It is perfectly possible for both those things to happen (even if each of
them is somewhat unlikely!). On the other hand, if event A is Scotland winning the
World Cup in some specific year, and event B Wales winning the World Cup the
same year, then clearly it is impossible for both these things to happen—not just
very unlikely, but logically exclusive—only one team can win.

It is helpful to think of such “either/or” problems graphically as Venn diagrams,
as illustrated in Fig. 1.3. The box represents the sample space S, i.e. the set of all
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Fig. 1.3 The difference
between exclusive and
non-exclusive events. The
light grey box represents the
set of all elemental
outcomes, and our events are
composed of subsets of these
elemental outcomes. Events
A and B are mutually
exclusive, whereas events C
and D have elemental
outcomes in common

elemental outcomes, and the circle A as the area representing the set of all outcomes
giving the event A. The probability of A is the area of A, normalised to the area of
S. For mutually exclusive events A and B, the sets do not overlap, and P(A or B) =
P(A) + P(B). However, if some elemental outcomes could give either A or B, then
the areas overlap. In this case

P(A or B) = P(A) + P(B) − P(A, B) (1.3)

i.e. to get the probability of either event occurring, we add the probabilities of each,
but correct for the times where both occur. Lets look at an example. Suppose we roll
two dice, and consider two different questions:

Question-1. Suppose event A is getting a total of T = 9 and event B is getting
a total of T = 5. What is the probability of A or B? Clearly A and B cannot both
occur—the two events are mutually exclusive. There are 4 ways to get event A
(T = 9), and 5 ways to get event B (T = 5), so that there are 4 + 5 = 9 ways to get
either A or B, and so P(A or B) = 9/36 = 1/4.

Question-2. Now suppose event C is getting a total of T = 12 and event D is
getting a double, where both dice are the same. What is the probability of C or D?
There is only one way to get 12, so P(C) = 1/36. There are six ways to get a double,
so P(D) = 6/36. However C and D are not exclusive—rolling a double six is an
example of both. The double six is already included in the calculation of P(D). So
P(C or D) = 6/36 + 1/36 − 1/36 = 6/36.
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1.5.5 Notation

If we see events as sets of elemental outcomes, then the event “C and D” is the
intersection of set C and set D, and so we could write P(C and D) as P(C ∩ D),
and likewise the event “C or D” is the union of sets C and D, and so we could write
P(C or D) as P(C ∪ D). However, in this book we will normally use P(C, D) for
the probability of C and D, and P(C or D) for the probability of C or D.

1.6 Probability as Degree of Belief

Historically, the word “probability” has been attached to two different concepts—
either the frequency of particular outcomes of an imagined ensemble of experiments,
or the degree of belief in a hypothesis. We have already looked at frequency—now
lets look at the other concept.

We need to start with the idea of a hypothesis. A hypothesis H is just the assertion
that some statement is true—“it will rain today”, or “the velocity of this particle
is less than 3 m/s”, or “the ball selected will be red”. Some people argue that the
sensible approach to hypotheses is to consider that they are always strictly either true
or false. We could attach truth values of 1 or 0 to a hypothesis. If we had complete
knowledge, we would know which statements are true and which are false. The
problem of course is that we don’t have complete knowledge, and so cannot make
definite and completely reliable statements about truth and falsehood. However that
doesn’t mean we can say nothing.

In realworld reasoningwe instinctively find ourselves expressing degrees of belief
in hypotheses, depending on the evidence we have. If we see dark clouds above, we
have a stronger belief in the statement “it will rain today” thanwe do if the sky is blue.
Perhaps rather than just 1 or 0, we could attach a numerical value to a hypothesis on a
sliding scale between 1 (definitely true) and 0 (definitely untrue). We could call such
a number the plausibility of a hypothesis. The trouble is, there are endless different
ways to do this. You could imagine stretching the sliding scale in many different
ways. However, it has been shown by Cox and Jaynes and others that if you require
your plausibility numbers to follow the same rules as frequencies of events, you get
a unique well defined scale, which we can call the credibility C of a hypothesis. To
spell it out, this means

• If we have a stronger belief in H1 than H2 we must have

C(H1) > C(H2)

• If we can list all the possible hypotheses Hi that can apply in a given situation,
then we must have ∑

i

Ci (Hi ) = 1.0
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• If we have two hypotheses H1 and H2, then the credibility we attach to the hypoth-
esis that both H1 and H2 apply should be

C(H1, H2) = C(H1)C(H2|H1)

• Likewise, the credibility attached to the hypothesis that either H1 or H2 apply
should be

C(H1 or H2) = C(H1) + C(H2) − C(H1, H2)

You will note that the way we have defined our credibilities, they behave just the
same way as the concept of probability that we derived from the idea of frequen-
cies, and so we might decide simply to think of credibility as the “probability of
a hypothesis”. In Part III of the book we will look at how we can use the obser-
vations we make to adjust our credibilities/hypothesis probabilities. When we do
this, we apply Bayes’s theorem. For this reason, such techniques are traditionally
known as Bayesian methods, and the whole approach of using a sliding scale for the
probabilities of hypotheses is known as the Bayesian approach.

1.6.1 What Is the “Correct” Definition of Probability?

To some extent this is a non-question. The ideas of “frequency of an imagined
ensemble” and “degree of belief” are both valid and useful concepts, and it is a
historical accident that the sameword has been attached to both. A strict “frequentist”
would deny that credibilities have any meaning. A strict Bayesian would say that
the probability of an event should actually be interpreted as your degree of belief in
the hypothesis that the event will occur, and that experimental frequencies are just
a way we can estimate such hypothesis probabilities. However, mathematicians can
put both approaches into a common framework, and scientists can and do use both
frequentist andBayesian concepts to solve problems, and given that event frequencies
and hypothesis credibilities follow the same algebra of combination, we can mix and
match them in calculations. This will become clearer when we look at examples in
Part III.

For the rest of this book, we will mostly use “probability” for both events and
hypotheses. However sometimes we will revive the term “credibility” to remind
ourselves of the conceptual distinction between frequencies and degrees-of-belief.

1.7 Look Ahead

We have established the basic ideas of random variables and probabilities, and how
they combine. In the second chapter of Part I we will look more in more detail at the
properties of probability distributions, and how we analyse errors, to give us some
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mathematical tools for the rest of the book. The remainder of the book divides into
three main chunks.

In Part II, we “turn the handle forward”, that is, given a variety of different physical
circumstances, we work out what frequency distributions we expect to see. So for
example, if we have a hot gas, and we know its temperature, and then make some
particle velocity measurements, how often should we expect to see various different
velocity values?

Next, in Part III, we look at how to “turn the handle backwards”—how we can
deducewhat the physical circumstances are, from the observed data. This is known as
the problem of statistical inference. So for example, if we make some measurements
of a few particle velocities, can we now work out what the temperature must be? The
answer will be “yes, but not with any certainty”, so we also need to understand how
we get uncertainties on our estimates.

Finally, in Part IV, we look at how probability theory is crucial in several key
areas of physics, often arising in the most historically controversial areas, such as
quantum mechanics, entropy, and the arrow of time.

1.8 Key Concepts

Some of the key concepts from this chapter are:

• Unpredictability comes from incomplete knowledge
• We can characterise the values attached to events as random variables—either
discrete or continuous

• Often,whatwewant is the frequency distribution of events/ randomvariable values
• To equate frequencies to probabilities, they need to be normalised, so that

∑

i

Pi = 1.0 or
∫ +∞

−∞
p(x)dx = 1.0

• To combine the probabilities of events, we need to know whether they are depen-
dent, and whether they are mutually exclusive

• We can attach a number to the degree of belief in a hypothesis, and think of this
as its probability or credibility

• Point values of probability density can be a bit unhelpful. Its better to look at
relative values, or probability integrated over a range.

Make sure you can understand the key formulae: how to calculate the probability
of getting both of two events (1.1), the closely related Bayes formula (1.2), and how
to calculate the probability of getting either of two events (1.3)
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1.9 Further Reading

There are course many good textbooks on the basics of probability and statistics, so
this is a small personal choice. For those who have had little exposure to statistics
before, a good choice is Clarke and Cooke (2011). This starts at high school level, but
covers a lot ofwhatwe need by the end, although not alwayswithmathematical proof.
A beautifully clear and quite short bookwhich coversmuch of ourmaterial at the right
level is Bulmer (2003). For a thorough and rigorous mathematical treatment, there is
a series of excellent books by John Freund and various collaborators and acolytes. A
recent incarnation is Miller and Miller (2013), which is really a reworking of Freund
and Walpole (1986). Lupton (1993) is also useful.

Most of the above books are centred on the traditional “frequentist” approach—the
Bayesian approach tends to be covered in research literature. A prominent exception
is Sivia and Skilling (2006), which is very simple and readable. If you are interested
in where these ideas came from, I strongly recommend Keynes (2010; originally
1921), Jeffreys (2000; originally 1939), and Jaynes (2003; originally 1967). The
research paper credited with first establishing that seeing probability as “reasonable
expectation” leads to a unique algebra is Cox (1946).

From themathematician’s point of view, modern probability theory sees no essen-
tial difference between the frequentist and Bayesian points of view. The mathemati-
cian defines a “probability space” as a set S of elements which can be combined
using the rules of a Boolean algebra B(S), and which have an associated probability
measure P , of total mass 1. However this rather sweeps the question under the carpet,
because, if the elements of our set are hypotheses, it avoids the question of whether it
is philosophically legitimate to associate a probability measure with those elements.
A good clear introduction to the mathematical approach to probability is given in the
early chapters of Applebaum (2008), who also provides a good set of references. The
origin of much of twentieth century probability theory is in the classic short book
first published by Kolmogorov in 1933. (The references list a 2018 reprint).

There are also coursemanywebsites providing useful statistical resources. I won’t
attempt to detail all these. A comprehensive listing of resources is provided at the
statpages.info website. Two resources I find particularly useful are the random.org
website which provides a variety of random number generators, and geogebra.org,
a very general online mathematics tool, which in particular provides a variety of
probability calculators.

1.10 Exercises

1.1 Adeck of cards has 52 cards, 4 of which are aces. You draw two cards at random.
What is the probability of drawing two aces if (a) the first card is replaced, and (b)
the first card is not replaced?
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1.2 You roll a die. What is the probability of the result being divisible by three? You
then roll two dice and examine the total. What is the probability of the result being
divisible by three?

1.3 A farmer leaves a will saying that they wish their first child to get half of their
property, the second child to get a third, and the third child to get a ninth. As they
have left seventeen horses, the children are distressed because they don’t want to
cut any horses up. However a local statistician lends them a horse so that they have
eighteen. The children then take nine, six, and two horses respectively. This adds
up to seventeen, so they give the statistician her horse back and everybody is happy.
What is wrong with this story?

1.4 From the records of a dental practice, it is found that when a patient visits, the
probability s/hewill have their teeth cleaned is 0.44; the probability of having a cavity
filled is 0.24; the probability of an extraction is 0.21. Furthermore, the probability of
having cleaning and a filling is 0.08; the probability of cleaning and an extraction is
0.11; and the probability of a filling and an extraction is 0.07. Finally, the probability
of having all three of cleaning, filling and an extraction is 0.03.What is the probability
of having at least one of cleaning, filling or extraction?

1.5 Amanufacturer of airplane parts knows from past experience that the probability
is 0.80 that an order will be ready for shipment on time, and it is 0.72 that an order
will be ready for shipment on time and will also be delivered on time. What is the
probability that such an order will be delivered on time given that it was ready for
shipment on time?

1.6 A test for cancer is known to be 90% accurate either in detecting cancer if present
or in giving an all-clear if cancer is absent. The prevalence of cancer in the population
is 1%. How worried should you be if you test positive? Try answering this question
with and without Bayes’ theorem.

1.7 A sock is selected at random and removed from a drawer containing five brown
socks and three green socks. A second random sock is then removed. What is the
probability that two different colours are selected?

1.8 A game show host shows you three doors, and tells you that behind two of them
is a cuddly toy, and behind one of them is a car. You pick a door. The host opens one
of the other doors, revealing a cuddly toy, and asks whether you want to switch your
choice to the other unopened door. Does switching improve your chance of winning
the car? (Hint: consider all the possible permutations of what is behind each door.)

1.9 In Russian roulette, a single bullet is loaded into a six chambered gun. The
chamber is spun, and the first player fires at their head. If they survive, the gun is
handed to the second player, who spins the chamber again, and then fires at their
own head. If the second player survives, they hand the gun back to the first player,
and so on. If you go first, what is the probability you will lose?
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Chapter 2
Distributions, Moments, and Errors

2.1 Outline of Content

• Sample versus population distributions
• Multi-variate distributions
• Summarising quantities for distributions
• Expectations and moments
• Transformation of probability distributions
• Error analysis

In the first chapter we began to look at how to reason in the presence of uncertainty.
This ledus to the idea of a probability distribution P(X)or p(x) for a randomvariable.
This might for example represent the distribution of molecular velocities in a hot gas.
In order to perform reasoning based on such distributions, we need to know how to
characterise and manipulate them. What is the typical value? What is the spread?
How do we deal with multiple variables? If we know the distribution for a variable,
can we deduce the distribution for a related variable? In this chapter we look at some
mathematical techniques to answer these questions. This will set us up for dealing
with real world distributions, and understanding how to perform statistical inference.
First however, we need to carefully distinguish between theoretically expected and
empirically observed distributions.

2.2 Sample Versus Population Distributions

Suppose we toss six coins and count how many heads we get. There is a theoretical
prediction for this, which we will derive in Chap.4:

Pn(X) = n!
n!(n − X)!

(
1

2

)n

.
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Fig. 2.1 Illustration of the difference between population and sample distributions. The theoretical
population (parent) distribution is shown by the filled circles, and shows the expected number of n =
0, 1, 2 . . . heads out of six coin tosses. Each histogram is the result of a simulated experiment using
a random number generator. Left: The simulated coins are tossed fifty times. The two histograms
represent two separate runs of this numerical experiment. Right: Same, but the simulated coins are
tossed a thousand times

Here, n is the number of coins we toss, X is the number of heads, and Pn(X) is
the probability that any individual n-coin toss will give us X heads. For n = 6 and
say X = 2 we get the predicted probability P = 0.234375. If we toss six coins an
infinite number of times, that is the fraction of times that we will get two heads.
Suppose however we do a real experiment in which we toss our six coins ten times.
The prediction is that out of those ten experiments, we will typically get two heads
10 × 0.24375 ∼ 2.4 times. Of course any one experiment can only give us an integer
number of heads. In reality we might get two heads perhaps two times out of the ten.
Then if we do another run of ten we might get two heads three times, and so on.

In any such situation, the theoretically expected perfect distribution is known as
the population distribution, or sometimes the parent distribution.1 A specific real
experiment produces what is known as a sample distribution, because the observed
values are sampled from the underlying true distribution. Figure2.1 shows several
sample distributions generated from the above formula, using a random number
generator. First, we take six coins and toss them fifty times, noting the number of
timeswe get no heads, one head, two heads etc.We then do a second run of fifty tosses
of six coins. The two sample distributions roughly follow the theoretical prediction,
but do not precisely agree with it, or with each other. Next we repeat the experiment,
but toss the six coins a thousand times. The agreement is still not perfect, but is closer.

One of the key problems of physical science is that often we don’t know what
the underlying process is, but would like to find out. All we have is the sample
distribution, and we wish to use this to try to understand what is going on. This is
the problem of statistical inference, which will occupy us in Part III of the book.

1Personally I prefer the term “parent distribution’ because it feels more explanatory, but ‘population
distribution” is more common in the literature.
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2.2.1 Sampling a Discrete Population Distribution

This follows the discussion in Chap.1, Sect. 1.4.1, which we recap briefly. A discrete
random variable X can be seen as having a set of n possible outcomes Xi . Although
the outcomes are distinct, it is quite possible to have an infinite set of them—for exam-
ple the possible outcomesmight be any positive integer. The different outcomes occur
with a well determined set of probabilities Pi , which constitute the population distri-
bution. The population distribution will be usually be defined by some mathematical
expression P(X). By contrast the sample is simply a list of observed data values xk .
(Note that i indexes the possible outcomes, whereas k indexes the list of data values).
There can be many repeat values—five 2s, eight 3s, etc. If there are Ni repeats of a
given Xi , the sample frequency distribution is then the set of these values Ni (Xi ). To
turn this into a normalised sample probability distribution, we need the total number
of samples N = ∑

i Ni . Then we have fi (Xi ) = Ni (Xi )/N . The fi values are then
estimates of the true population values Pi .

2.2.2 Sampling a Continuous Population Distribution:
Binning

For a continuous random variable, the population PDF will normally be given by
some smooth mathematical function p(x). Note that we might not necessarily know
what this function is, or be able to write it down, but we assume that it nonetheless
exists. Meanwhile, the measurements are still just a list of distinct values xk . We need
to somehow relate these to the density of probability p(x) in the local region. We
can do this by binning the values. We choose a range Δx centred on each of a set of
values xb, where b can be seen as the “bin number”, and count how many times the
individual measurements xk fall inside the range xb ± Δx/2. This gives us a binned
sample frequency distribution Nb(xb). At each position, we can get the sample PDF
pb(xb) = Nb(xb)/NΔx , where N = ∑

b Nb is the total number of measurements.
The pb values are then estimates of the population PDF, p(x).

For these to be good estimates, we need Δx to be large enough that we get a
reasonable number Nb in each bin, but not so large that p is changing a lot across
the bin. This is not always an obvious choice, as you can see in Fig. 2.2. Note that
although we have assumed that xb is the value at the centre of the bin, sometimes
people define xb as the lower edge of the bin. Likewise, we assumed thatΔx is fixed,
but in principle it could be different for each bin—for example you might use wider
bins towards the wings of the PDF in order to get larger counts. Watch out for what
different authors are doing!
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Fig. 2.2 Comparing a
binned sample distribution to
its population (parent)
distribution. The smooth
population distribution is the
same Gaussian distribution
in each case (see Chap.5 for
the definition of the
Gaussian). A random
number generator was used
to generate 5000 random
samplings from that
Gaussian PDF, which was
then binned into ranges of x .
The upper and lower figures
show different bin widths Δx

2.3 Multi-variate Distributions

Quite often we want to deal with two or more variables. The methods we have used
above generalise quite simply, but we now have the additional question of how the
variables relate to each other.

Suppose X and Y are discrete random variables, with n and m possible outcomes
respectively, which we can label Xi and Y j . Then we can define the joint probability
for any i, j pair, to give the joint probability distribution Pi j , where i runs from 1
to n and j from 1 to m. The sample is a list of individual xk, yk data value pairs.
We can count how many times Ni j the various possible outcome pairs Xi ,Y j occur,
normalise by the total number of experiments N = ∑

i j Ni j , and so get a normalised
sample distribution which will be an estimate of the true Pi j values.
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If x and y are continuous randomvariables, then the population probability density
will correspond to some smooth function p(x, y), such that p(x, y)dxdy is the
probability that in a specific trial the two variables will fall in the range x to x + dx
and y to y + dy. We can extend these definitions to any number of variables using
p(x, y, x)dxdydz and so on. The sample data values are once again a list of xk, yk
data value pairs. Just as in the 1D case, we could count occurrences within a chosen
set of bins centred at xb, yc, with binwidths Δx,Δy, divide the count by the bin area
and the total number of experiments, and so estimate p(x, y) at each bin centre.

Figure2.3 shows two examples of bivariate distributions. The upper panel shows a
smooth bivariate probability density function, simulated using the Gaussian function
that wewill discuss in Chap.5. The lower panel shows an example of a bivariate sam-
ple distribution, represented as a table of numbers—the observed binned frequency
distribution of the measured breadth and length of human heads, in a sample of 3000
people. This sample of head sizes is assumed to be drawn from some true under-
lying smooth population distribution of probability density. We do not know what
that true population distribution is, and certainly don’t know how to write it down
mathematically, but we assume that it exists. Note that the cell sizes are 0.5cm in
each direction. To estimate the population probability density distribution, we would
start by taking the numbers in each cell, dividing by N = 3000, and then dividing
by the bin area 0.5 × 0.5 = 0.25, to give estimated probability densities in units of
probability per cm2.

Suppose we are interested in the distribution of just y, rather than the joint dis-
tribution of x, y. How do we extract that from the bivariate distribution? As often in
statistics, it depends on what you mean exactly. We might mean (i) at this particular
value of x , what is the distribution of y? Or we might mean (ii) what is the overall
distribution of y, if we don’t care what the value of x is? Lets examine these two
questions.

2.3.1 Conditional Distributions

To answer question (i), we choose a particular value of x and freeze it. Then the
frequency distribution of y is given by taking a vertical slice along y at the chosen x
value. This is called the conditional distribution of y. Note however that these values
will not sum to 1.0; so we need to re-normalise by summing all the values in the slice
and then dividing each value by the sum. For the discrete and continuous cases this
gives

gi ( j) = g(Y |Xi ) = Pi j∑m
j=1 Pi j

or gx(y) = g(y|x) = p(x, y)∫
p(x, y)dy

. (2.1)

We write i or x as a subscript and j or y in the brackets to indicate that we are seeing
the result as a function varying over j or y, at a chosen value of i or x . In a similar
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Fig. 2.3 Illustrations of bivariate probability distributions.Upper: This shows a smooth continuous
probability density distribution, with the value of probability density represented as a greyscale as a
function of x and y. The mathematical formula used was a bivariate Gaussian, which we will define
in Chap.5. The “slices” are explained in the text. Lower: This shows a binned sample distribution.
The dataset is a real one, representing the measured breadths and lengths of the heads of a sample
of 3000 criminals, published by MacDonell (1902). The numbers show the number of people with
breadth/length in the binned ranges shown. The entries in the rightmost column shows the sum of
the values in the row to the left. Likewise, the entries in the bottom row shows the sums of the
columns above
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Fig. 2.4 Conditional versus
marginal distributions. The
dotted curves show the result
of taking a vertical slice
through the bivariate PDF
shown in the upper part of
Fig. 2.3, at the two x-values
indicated. The solid curves
show the adjustment when
these curves are normalised
as explained in the text. The
dashed curve shows the
marginal distribution of y
obtained by integrating
over x

manner, we could take a slice at a given y to construct the conditional distribution
of x , gy(x). Note that the integration is over the full range of y or x as appropriate,
which may be 0 to ∞, or −∞ to ∞, or potentially some other range.

The upper panel in Fig. 2.3 shows two different slice positions through the con-
tinuous PDF, and the result of constructing these slices is shown in Fig. 2.4, before
and after re-normalisation. For the binned sample distribution in the lower panel of
Fig. 2.3, the conditional distribution corresponds to taking the values in a specific
column, Ni j (Y j |Xi ). To turn these frequencies into a normalised probability distri-
bution, we have to divide by the total in that column,

∑
j Ni j , which is shown at

the end of the columns—for example taking the numbers in the column with head
breadths in the range 14.5–15cm, we divide by 971.

2.3.2 Marginal Distributions

To answer question (ii), the overall distribution of y regardless of x , lets start by look-
ing at the binned sample version. We start by choosing a value of y, say y = 18.75.
We count all the occurrences in cells consistent with that value. This corresponds
to adding the values in the row with y = 18.5–19.0, giving 693. We then repeat for
different y values, giving the final column on the right of the table in Fig. 2.3. This
process is known as “marginalising over x”, giving the marginal distribution of y,
because the result is written in the margin of the table. For a continuous PDF, we can
apply exactly the same logic, by dividing the x, y plane into differential dx, dy cells.
For the discrete and continuous cases, we can then write the marginal distribution
for y as

g( j) =
n∑

i=1

Pi j or g(y) =
∫

p(x, y)dx . (2.2)
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Likewise, we can construct the marginal distribution of x by integrating over y. Note
that as long as p(x, y) is a properly normalised PDF, there is no need for any further
normalisation. If we marginalise over an observed frequency distribution such as the
table in Fig. 2.3, then we normalise over the sum of values over the whole of the
x, y plane. Figure2.4 contrasts conditional and marginal distributions, showing the
results we get for the bivariate PDF example of Fig. 2.3.

2.3.3 Dependence

Note that the grey-scale ellipse in the bivariate example of Fig. 2.3 is tilted diagonally.
As a result, when we take the two vertical slices, we get a different answer for
each slice, as shown in Fig. 2.4. This shape-changing means that the variables are
dependent. This is another way of looking at the result we got in Chap.1. If the
variables x and y are independent, then g(y|x) is the same as g(y), and we can write
p(x, y) in the form p(x, y) = f (x)g(y), where f (x) and g(y) are the marginal
distributions of x and y. Likewise for the discrete case, we can write Pi j as fi g j . In
this case g(y) is also the same as the conditional distribution of y, for all values of x .
If the variables are dependent, this will not be the case; the conditional distribution
g(y)will be a function of x . Note that we can always form the marginal distributions
f (x) and g(y), but if the variables are dependent, then we can’t write p(x, y) in the
separated form.

2.4 Summarising Quantities for Distributions

For a population distributionwewill in principle have amathematical expression that
fully defines the distribution. For a sample distribution, we don’t have this, andwould
like an objective way to characterise the observed distribution. What is the “typical”
value, what is the spread of values, is it a flat topped or peaky distribution? Even for
population distributions with mathematical expressions, these simple numbers are
useful for comparing one distribution to another. Furthermore, if we calculate these
properties for an observed sample distribution, we can take them as estimates of the
equivalent quantities in the underlying population distribution.

How do we define such summarising quantities carefully? In this section, we will
start by doing this in an intuitive way, looking at the concepts of mean, variance,
and covariance. Then in Sect. 2.5 we will look at a more formal general method for
generating summarising quantities—calculating the moments of a distribution. Bear
in mind that a sample distribution is essentially a list of xi ’s, although we might
typically present the data as a binned histogram.
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2.4.1 Measures of Location

First we might ask “what is the typical value?” There are three common ways of
translating this qualitative concept into something rigorous. The first is to use the
histogram and estimate the most probable value or mode, where the local density
of xi values is highest. This is intuitive but sensitive to how you bin the histogram.
Anothermethod is themedian—the value for which half the values are above and half
below. This has the great virtue of being completely robust against transformations
of x , but it is hard to work with mathematically. The commonest estimate is the
arithmetic mean or average:

sample mean x̄ =
∑

xi
N

population mean μ =
∫

x p(x)dx (2.3)

where once again the integration is over the full range of x , whatever that may be.
Note that convention is to carefully distinguish the sample mean and the population
mean by using two different symbols, x̄ and μ. For any real sample, they won’t
quite be the same, but in the limit of large N , x̄ → μ. For symmetrical population
distributions, the mean, mode and median will all be the same on average. For an
asymmetric PDF, they will not be the same, as illustrated in Fig. 2.5.

2.4.2 Measures of Dispersion

Nextwewant to know the spreadof values.Wecould start by calculating the deviation
of each point from the mean, xi − x̄ . The mean value of this will typically be zero
for many population distributions, which is not helpful. We could find the average

Fig. 2.5 Measures of
location and dispersion for
an asymmetric PDF, with a
symmetric PDF shown for
comparison
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of the absolute value, but this is hard to work with mathematically. Instead it is usual
to define the variance

sample : V = s2 =
∑

(xi − x̄)2

N
population : σ 2 =

∫
(x − μ)2 p(x) dx

(2.4)

Once again we carefully use separate symbols for the sample and population
versions, V = s2 and σ 2, and expect that V → σ 2 in the limit of large N . The
square root of the variance, s = V 1/2 or σ , is then the standard deviation. The ratio
s/x̄ is sometimes called the coefficient of variation. It gives us a dimensionless
quantification of spread that we can compare from one distribution to another.

2.4.3 Percentiles of a Distribution

Sometimes we want to know what range of x values will encompass “most” of the
outcomes of an experiment, where by “most” we mean, say, 90% or perhaps 95%
or 99%, depending on how cautious we want to be. What we need to do then is to
integrate p(x) and find two values x1 and x2 such that

Pint =
∫ x2

x1

p(x) dx

where Pint = 0.9 or 0.95, etc. There are two problems with implementing this idea.
The first is that most distributions are not analytically integrable. Of course, all the
well known distributions have been numerically integratedmany times, so the custom
is to use tables of integrals, or computer routines. The second problem is that there
are many possible pairs of values x1 and x2 which would give the same value of Pint,
so one needs a further specification. One solution is to specify a symmetrical distance
x either side of the mean, and look for the integrated probability in the rangeμ − x to
μ + x . Another might be to look at the integral from x from ∞ (or the maximum of
the x range), so that one is asking “what value of x would I need so thatmost outcomes
are at least that big?”. The general lesson, as often in statistics, is to be careful to
frame your question precisely. This question—ambiguity in integrated probability—
comes up often in traditional hypothesis testing problems—see Chap.7, Sect. 7.6.2,
and in particular Fig. 7.2.

2.4.4 Summarising Quantities for Multivariate Distributions

If we have a bivariate distribution p(x, y) then we can find quantities characterising
x and y by first forming the marginal distributions f (x) and g(y) and then using
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these to calculate μx , μy and σ 2
x and σ 2

y . However, we would also like quantities
which summarise how the variables are related together. Potentially, there are many
different ways we could do this, but the most common question is to ask “when y is
bigger, does x also then tend to be bigger, and vice versa?”. The simplest quantity
which captures the sense of this question is the covariance:

sample sxy =
[
1

N

∑
(xi − x̄)(yi − ȳ)

]
popn. σxy = lim

N→∞ sxy . (2.5)

If there is no tendency for x and y to vary together, then the terms inside the sum
are just as likely to be negative as positive, and so the sum tends to zero. On the
other hand, the “tilted” bivariate distribution illustrated in Fig. 2.3 will clearly give a
positive value for σxy . A distribution tilted from top left down to bottom right would
give a negative value. This begins to look like a test for whether two variables are
dependent or independent, but in fact the issue is a little more subtle, and we will
return to it in Chap.9.

We can extend these ideas to any number of random variables x1, x2, x3 . . . xi , . . .
for a general multi-variate distribution.. We can form the marginal distribution for
any variable xi by marginalising over all the others, and then find μi and σ 2

i . We
can think of the list of each of these as a vector characterising the distribution.
Likewise, we can look at the covariance of each possible pair of variables in turn,
and find all the covariances σi j . The collection of covariance values σi j is known as
the covariance matrix, with the diagonal values σi i = σ 2

i being the variances of the
individual variables.

2.5 Expectation Values and Moments

As discussed at the start of Sect. 2.4, we would like a standardised way of generating
a small set of numbers which can summarise the features of a distribution. The usual
method is to calculate the moments of the distribution. Before we explain what this
means, we first need a newmathematical concept—the expectation value of a random
variable.

2.5.1 Expectation Values

The expected value of a random variable, alternatively called the expectation value, is
simply the average of all its possible values,weighted by the probability of occurrence
of each value. We can define this concept for either discrete or continuous random
variables:
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E[X ] =
∑
X

X P(X) or E[x] =
∫ ∞

−∞
xp(x)dx (2.6)

Here as usual P(X) is the set of probabilities of the discrete random variable X , and
p(x) is the PDF for the continuous random variable x . (You will often see expected
values written as 〈x〉 rather than E[x]. Personally I find this less readable, but it is
very common, especially in the mathematical literature.) Because a function of a
random variable is also a random variable, we can calculate the expected value of
any function of x

E[ f (x)] =
∫ ∞

−∞
f (x)p(x)dx .

2.5.2 The Algebra of Expectations

With a little manipulation, you can see how expectation values combine:

E[X + Y ] = E[X ] + E[Y ]
E[X − Y ] = E[X ] − E[Y ]
E[aX + b] = aE[X ] + b

E[aX + bY ] = aE[X ] + bE[Y ]

Note also that if b is a constant E[b] = b; and because an expected value is itself a
constant, having integrated over x , then E[ E[x] ] is just E[x].

2.5.3 Moments of a Distribution

The moments of a random variable x are just the expected values of xn for various
n:

mn = E[xn]. (2.7)

The moments calculated for successively higher powers n are just the quantities we
want to represent the features of a distribution, starting with the simplest features
and moving up towards more subtle ones. Stepping through these:

The zeroth moment m0 = ∫ +∞
−∞ p(x)dx = 1 as long as p(x) is properly normalised.

The first moment m1 = E[x] = μ is the mean—it is the expected value of x .

The standard second moment is m2 = E[x2], but from here on it is more useful to
define the centred moments obtained by shifting the origin of x to the mean:
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μn ≡ E
[
(x − E(x))n

] = E
[
(x − μ)n

]
.

Then μ0 = 1 and μ1 = 0. Note that μ, the mean value, is not the same as μ1. It is
annoying that the same letter is used, but unfortunately this is the convention. The
second centred moment is then

μ2 ≡ E
[
(x − μ)2

] = Var(x) = σ 2.

In an analogous manner, for a bivariate distribution,

E[(x − μx )(y − μy)] = Cov(x, y) = σxy .

A useful result which can be obtained (see exercises) is that

σ 2 = E
[
(x − E [x])2

] = E
[
x2 − 2xE [x] + E [x]2

] = E
[
x2

] − E [x]2 .

In other words, the variance can be obtained from the mean of the square minus the
square of the mean.

2.5.4 Sample Moments

Themoments for the sample distribution are definedusing the same idea—the average
value of powers of x . They can be defined with respect to any point xa , i.e. by
calculating the average of (xi − xa)n , but the most commonly used values are the
central moments, i.e. with respect to the position of the mean. Then we have

μn = 1

N

N∑
i=1

(xi − x̄)n.

2.5.5 Higher Moments: Skewness and Kurtosis

For either population or sample distributions, we can calculate higher moments such
as μ3, μ4 and so on. We can use these to characterise the degree of asymmetry of a
distribution (skewness), or its degree of peakiness (kurtosis). These moments carry
the units of x of course, so to compare one distribution with another, it’s normal
to define dimensionless coefficients by normalising to an appropriate power of the
second moment:

skewness α3 = μ3

σ 3
kurtosis α4 = μ4

σ 4
.

Skewness can be positive or negative, depending on the direction of skewness,with
a symmetric distribution having α3 = 0. A moderately skewed distribution might
have α3 ∼ 1

2 to 1. The exponential distribution which we shall meet later has an
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Fig. 2.6 PDFs with the
same variance (σ = 1) but
different values of excess
kurtosis. The middle (dotted)
curve is a Gaussian, and by
definition has zero excess
kurtosis. The upper (solid)
curve is a hyperbolic secant
and has excess kurtosis 1.2.
The lower (dashed) curve is
a stretched semi-circle and
has excess kurtosis of −1.2.
This figure is based on that
originally made by Mark
Sweep for the wikipedia
article on kurtosis

extreme skewness of α3 = 2. Kurtosis can in principle be anywhere between 1 and
∞. The normal or Gaussian distribution has α4 = 3, so it is common to compare
to this by defining the excess kurtosis as α − 3. A distribution with positive excess
kurtosis (peaky) is known as leptokurtic. A distribution with negative excess kurtosis
(squat) is known as platykurtic. Examples are shown in Fig. 2.6.

2.6 Transformation of Probability Distributions

If we have a random variable x then any function of that variable, z = z(x), is also a
random variable. If we have a mathematical expression for the PDF of x , say f (x),
then we can derive an expression for the PDF of z, g(z) using the usual rules of
calculus:

g(z) = f (x)
dx

dz
.

Likewise for multivariate probability distributions we can transform to other vari-
ables, but of course the algebra will be more cumbersome, involving Jacobians and
so on. We could then proceed to calculate the moments of the new distribution e.g.
μz = ∫

zg(z)dz. In practice by far the most common question is to ask what happens
to the variance in the transformation—if we know σ 2

x , what is σ 2
z ?

2.6.1 Transformation of Variance: Univariate Case

We can write down the variance of z as

σ 2
z = lim

N→∞

[
1

N

∑
(zi − z̄)2

]
.
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Now consider deviations in x . To a first order approximation we have

zi − z̄ = (xi − x̄)

(
dz

dx

)
,

so then we get

σ 2
z = lim

N→∞
1

N

∑
(xi − x̄)2

(
dz

dx

)2

.

The first part of that expression is just the variance of x . So finally we can see that

σz = σx

(
dz

dx

)
. (2.8)

2.6.2 Transformation of Variance: Bivariate Case

Things get more interesting if we have a bivariate PDF which is a function of the
two variables x and y, with the new variable z being a function of both, z = f (x, y).
Now we need to consider the partial derivatives of z with respect to x and y, so that
the deviations in z, to first approximation, are

zi − z̄ = (xi − x̄)

(
∂z

∂x

)
+ (yi − ȳ)

(
∂z

∂y

)
,

and the variance in z will be

σ 2
z = lim

N→∞
1

N

∑ [
(xi − x̄)

(
∂z

∂x

)
+ (yi − ȳ)

(
∂z

∂y

)]2

,

which gives

σ 2
z = lim

N→∞
1

N

∑ [
(xi − x̄)2

(
∂z

∂x

)2
+ (yi − ȳ)2

(
∂z

∂y

)2
+ 2(xi − x̄)(yi − ȳ)

(
∂z

∂x

)(
∂z

∂y

)]
.

The first two terms inside the sum are the variances of x and y, scaled by the depen-
dence of z. The third term includes the covariance which we defined in (2.5). So we
have

σ 2
z = σ 2

x

(
∂z

∂x

)2

+ σ 2
y

(
∂z

∂y

)2

+ 2σxy

(
∂z

∂x

) (
∂z

∂y

)
. (2.9)
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Much of the time we assume that x and y are independent variables, so that the
covariance term vanishes. A simple example is the sum of two random variables. If
we have z = x + y, and assume x and y are independent, then by calculating ∂z/∂x
and ∂z/∂y we find that

σ 2
z = σ 2

x + σ 2
y . (2.10)

So we see that uncertainties “combine in quadrature”. It is the variances that add,
not the standard deviations. For this simple example, if x and y are dependent, then
we have σ 2

z = σ 2
x + σ 2

y + 2σxy . With a little algebra, and assuming independence,
we can derive some further handy examples of combining variances:

f = ax ± by σ 2
f = a2σ 2

x + b2σ 2
y

f = xy or x/y
(
σ f / f

)2 = (σx/x)
2 + (

σy/y
)2

f = ax±b
(
σ f / f

) = b (σx/x)
f = a ln (±bx) σ f = a (σx/x)
f = ae±bx

(
σ f / f

) = bσx

f = a±bx
(
σ f / f

) = b ln(aσx )

2.7 Error Analysis

An important practical application of the formulae for combining variances is in
understanding the errors on quantities derived from measurement. Before we spell
that out, let us take a more careful look at the concept of error, and how it relates to
probability distributions.

2.7.1 Types of Error

From high school physics onwards, we are taught that we should associate uncertain-
ties or errors with our measurements. In fact the term “error” in science is a rather
subtle one, with several different meanings that are worth carefully distinguishing.

In normal English, an “error’ is some kind of actual mistake. This can certainly
apply to physical experiments. If we believe we are measuring a lump of Sodium,
and it’s actually a lump of Potassium, we will certainly get an incorrect value. There
might also be some kind of fixed bias, i.e. an offset from the true value. We measure
some effect with a voltmeter, but a problem with our circuitry means that all our
measurements have 0.03V added to them.

Mistakes and biases can in principle be corrected. However, central to the idea
of error analysis is that a range of measured values is unavoidable, because the act
of measurement is itself a random process. We assume that some property has a
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true value xt , but the measured value x is a random variable. Each time we run the
experiment and produce a value of x , it is drawn from some probability distribution
e(x), known as the error distribution, centred on the true value xt . For themost careful
analysis, wewould in principle like to know the full e(x), but if we are to pick a single
number to represent the random error, it would be the standard deviation σ of the
distribution e(x). In many cases it is reasonable to assume that the error distribution
is a Gaussian distribution, which we discuss in Chap. 5. The Gaussian distribution is
fully specified by its mean and variance, so in fact we can calculate the probability
of any other value.

We should carefully distinguish the idea of randomness in the measurement pro-
cess from the idea of randomness in actual physical properties. People have a variety
of heights, and so the height h of a person selected at random from a large population
has a spread. If we measure the height of one specific person, we should in principle
get a single definite value. However, when we measure the height of that specific
person repeatedly, we actually get a small spread of results, because of randomness
in the measurement process.

Quite oftenmeasurements involve both truly randomerrors, and systematic errors,
a term which includes both fixed biases and unknown uncertainties of various kinds.
The key question is whether making more measurements helps or not. If a sample of
measurements is drawn from an assumed underlying random error distribution, then
we can use the sample mean as an estimate of the true value. Themoremeasurements
we make, the more precisewill be our estimate of the population mean. The error on
30 measurements is smaller than the error on 3 measurements. (We will sharpen that
statement in Chaps. 3 and 4.) However, if we are dominated by systematic errors, the
precision does not improve—the error stays just as big, however manymeasurements
wemake. If both a random error and a systematic error apply, it is healthy if we quote
each separately, rather than a combined error.

2.7.2 Evaluating Errors

Sometimes we know what is causing the randomness in the measurement process.
For example, when an experiment involves counting things, such as the number of
photons detected from a star, the number counted is subject to Poisson statistics,
which we will look at in Chap. 4. Often however, we do not know the source of error;
we then need to estimate the error empirically bymaking a sequence ofmeasurements
and calculating the sample variance. Of course, as Donald Rumsfeld might have
said, our problem is not just the known errors, or the known unknown errors, but the
unknown unknown errors.

Often the quantity that we measure is not the same as the quantity of interest.
We might for example have an experiment where we measure a voltage and a time
delay, but then we use some formula to calculate the value of electron mass that
these measurements imply. We might perhaps perform the experiment several times,
and use the spread of measured values of voltage and time delay—in other words
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their standard deviations—as a measure of the error on each of those quantities.
Given those errors on voltage and time delay, what then is the error on our calculated
value of electron mass? To find this, we can propagate the errors using formulae
such as those derived in Sect. 2.6, if necessary allowing for the possibility that our
measurements of voltage and time delay are not independent, so that we need to
calculate the covariance as well the variances.

There is however a danger in this process of propagating errors using the standard
formulae. Our tendency is to assume that measurement errors follow a Gaussian or
normal distribution. This is generally a fairly good assumption, for reasons we will
discuss in Chap.5. One of the advantages of assuming a normal distribution is that
if we know the value of σ , we have a pretty good idea of how common it is to find
points within ±2σ or ±3σ etc. However, when we have transformed to some other
variable z, although the formula will give the correct value for the dispersion σz , the
PDF of z will in general not be Gaussian, so our instinct for how likely aberrant
points are is not reliable.

As an example, consider how we might plot error bars for data points when
our data processing has involved taking logs. Suppose we have measured a value
x = 256 and have estimated an error σx = 27, so that the 1σ range of x is from 229
to 283. We then decide to transform our data to base 10 logs before plotting. Our x
measurement corresponds to z = log10(x) = 2.408. If we take the ±1σx limits of x
and also transform these to logs, we get the range z = 2.360–2.452. However, the
propagation formula tells us that σz = 0.110. Taking ±1σz limits, we get the range
z = 2.298–2.518. As often in statistics, there is no unique correct method—you just
need to be explicit about what you have done.

2.8 Key Concepts

Some of the key concepts from this chapter are:

• The distinction between population (parent) and sample distributions
• Howyou canmake 1Ddistributions from a 2D (bivariate) distribution two different
ways: either by taking a slice (conditional distribution) or by integrating over the
variable you don’t care about (marginal distribution)

• The difference between mode, median, and mean
• The idea of variance to characterise the spread of a distribution
• The idea of the expectation value of a random variable
• The idea of the moments of a distribution as the expectation values of xn

• How variances transform when you make a function of one or more random vari-
ables

• The importance of transmission of variances for error analysis, and especially how
errors add in quadrature.

There were lots of equations in this chapter, but make sure you can understand
the key formulae: how to calculate conditional and marginal distributions ((2.1) and
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(2.2)); the formulae for mean and variance of a distribution ((2.3) and (2.4)), and
the covariance of a bivariate distribution (2.5); the definitions of expectation value
(2.6) and moments of a distribution (2.7); the method for transforming variance for a
function of random variables in the univariate case (2.8) and the bivariate case (2.9);
and derived from this, how errors add in quadrature (2.10).

2.9 Further Reading

Most of the material in this chapter is covered by the same basic textbook references
as for Chap.1. There are however some textbooks which specifically discuss the
analysis of errors, such as Taylor (1996) and Hughes (2010).

The distribution of head lengths and breadths, used as an example of a sample
bivariate distribution, has a curious history. I came across it in the textbook of Bulmer
(2003), but the sample is from a research paper by MacDonell (1902). This was a
study which was part of the now discredited science of phrenology—the idea that
the shapes of heads tells you something about the moral character of a person.

2.10 Exercises

2.1 From the data in the table shown in Fig. 2.3, estimate the mean, median, and
mode for the marginalised distributions for head length and head breadth. In each of
those two cases, are mean, median and mode the same?

2.2 A random variable x has the PDF f (x) = ke−3x for x > 0 and f (x) = 0 else-
where. Find the probability that x lies between 0.5 and 1.0.

2.3 Two random variables x and y follow the joint PDF f (x, y) = 2
3 (x + 2y) for x

and y between 0 and 1, and 0 elsewhere. Find the marginal PDFs for x and y.

2.4 If x is the number scored with one roll of a dice, what is the expected value of
the random variable g(x) = 2x2 + 1?

2.5 Prove the result given in Sect. 2.5.2, that σ 2 = E[x2] − E[x]2.
2.6 In the notes, we defined the n’th moment as E[xn], and then considered the
centred moment as μn = E[(x − μ)n]. More generally we could define the moment
with respect to the arbitrary point xa as E[(x − xa)n]. Derive expressions for the
zeroth, first and second moments of a sample distribution in terms of the standard
sample mean and variance, with respect to the point x = xa .

2.7 When tossing a coin, what is the average number of tosses before getting heads?
If rolling a die, what is the average number of rolls before getting a 6?
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2.8 Two particle physics labs are attempting to measure the mass of the zarquon
particle. Lab A gets mA = 1326 ± 150MeV; Lab B gets mB = 1560 ± 125MeV.
There is a suspicion that Lab B always has some offset in its measurements. How
does the difference between the mass measurements compare to the expected error
on that quantity? Does it look like evidence for the suspected offset? What about the
ratio of the two mass estimates?

2.9 The apparent brightness of a star can be measured using the flux F of light from
the star—i.e. the amount of light energy per second per square metre due to that star
arriving at Earth. However, astronomers often quote the apparent brightness of a star
as its magnitude, defined using

m = k × log10

(
F

F0

)

where F is the flux of the star; F0 is a constant, a standard “zeropoint” flux that the
star is compared to; and k is a constant that is used to match the magnitude scale onto
the values used historically. Astronomers use this strange method partly because star
fluxes cover an enormous range, so using a logarithmic scale makes some sense; and
partly because getting absolute measurements is very hard, so using a relative scale
makes sense—you can compare one star to another.

If the error on the flux is σF , what is the error on the magnitude, σm? To match
historical magnitude values, astronomers use k = −2.5. (This means that “sixth
magnitude” is a hundred times fainter than “first magnitude”.) Show that this gives
magnitude errors that are numerically close to the fractional flux error, σF/F . What
value of k would make this exactly correct?
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Part II
Frequency Distributions

in the Physical World

In Part I, we met the idea of a probability distribution, and in particular, the inter-
pretation of this as the relative frequency with which unpredictable events occur.
In Part II, we look at how such frequency distributions occur naturally in various
physical circumstances. At the root of how to treat such issues mathematically is the
subject of combinatorics—how to count the number of ways different permutations
and combinations of events can occur.

In Chap. 3, we first look at the basics of how to perform such calculations, and
then examine the ideas of partitions, macrostates, and microstates, and how such
calculations lie behind some of the core ideas of statistical physics—for example,
the Second Law of Thermodynamics, and the Boltzmann distribution of particle
energies.

In Chap. 4, we use the ideas of combinatorics to look in more detail at situations
that involve any kind of either/or, or hit/miss question, and see how this leads to one
of the most common frequency distributions—the Binomial distribution. Narrowing
down further to cases where the “hit” probability is small, we arrive at another
important distribution of widespread physical application—the Poisson distribution.
Together, the Binomial and Poisson distributions are sometimes known as counting
statistics.

In Chap. 5, we look at the single most famous distribution in statistics—the Gaus-
sian or “normal” distribution, which is extremely widespread in Nature, in a huge
range of apparently completely unrelated circumstances. This mysterious physical
universality actually turns to be a kind of (almost) inevitable mathematical conver-
gence that happens when we combine many different random events. To see how
this works, we will need to understand how adding two random variables produces
a convolution of their probability distributions. We also see how some other well-
known physical distributions—for example, the Maxwell–Boltzmann distribution of
velocities—are really Gaussians in disguise.

Finally, in Chap. 6, we look at frequency distributions that arise from stochastic
processes—i.e. sequences of random events in time. This leads to the concept of a
randomwalk, and twomore frequency distributions of great importance in Physics—
the Lorentzian distribution, and the power law distribution.
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Chapter 3
Counting the Ways: Arrangements
and Subsets

3.1 Outline of Content

• Balls, slots, boxes and labels
• Multi-step operations
• Arrangements or permutations
• Subsets or Combinations
• Macrostates and Microstates
• Finding the most probable macrostate
• Examples in Statistical Physics

This chapter is all about counting the ways we can arrange things, or create
combinations or subsets of objects. Mathematically, the topic of combinatorics is
at the heart of understanding a variety of naturally occurring distributions, and also
underlies much of statistical inference, but it is also of direct physical interest. For
example, we learn that the entropy of a closed system never decreases—but why is
this? It is essentially because some configurations of molecules in a box are more
common than others. But how much more common? As we shall see, the answer is
hugely more common. In a similar fashion, the remorseless logic of combinations
shows that particles must be distributed exponentially in energy. A little simple
combinatorics goes a long way.

3.2 Balls, Slots, Boxes, and Labels

Combinatorics can get very confusing. I find it helpful to think in terms of a simple
uniform physical picture, that any other situation can be mapped on to. Some prob-
lems boil down to starting with a collection of balls, and thinking about putting the
balls into a set of slots, where each slot holds one ball. (There could be some empty
slots however, or there might be more balls than slots.) Other problems boil down
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to putting the balls into a set of boxes, where each box could hold several balls. The
question is always “how many different ways can I carry out this operation?”

What counts as a “different way” depends however on which elements are distin-
guishable and which are not. You can always think of this as depending on whether
the balls or slots or boxes have labels on—if they don’t, you can’t tell them apart.
You might have various ways of arranging some labelled balls; but if you take the
labels off, you can’t tell which arrangement is which, so those don’t count as different
ways. Sometimes you will see a distinction made concerning whether the order of
selected elements matters, but this is essentially the same issue as labelling. Imagine
putting balls into some order—then position-1, position-2 etc is just like labelling
slot-1, slot-2 and so on. If you take the labels off the position-slots, you can then
shuffle them round and not know the difference. When a problem in combinatorics
is getting confusing, it can often be helpful to stop and ask yourself “could I tell the
difference?”

You may worry that the question of distinguishability is subjective. For example,
most people can tell red and green balls apart, but some colour-blind people cannot.
But as we discussed in Chap.1, “subjective” doesn’t mean “vague andwoolly”. It just
means ‘observer dependent”; and in many physical circumstances, such as knowing
the properties of molecules in a container of gas, every plausible observer is in an
equal position of ignorance.

3.3 Multi-step Operations

First, the most basic rule. If an operation is made up of multiple consecutive steps,
with step-1 having n1 choices, step-2 having n2 choices and so on, the total number
of ways I could make these choices is

Wchoice = n1 × n2 × n3... (3.1)

If a menu has 5 starter choices, 4 main course choices, and 6 dessert choices, we
could pick 120 possible different dinners. Sometimes it can be helpful to illustrate
the situation as a tree diagram.

3.4 Arrangements or Permutations

How many different ways are there to arrange n distinguishable items? Suppose I
have an apple, and orange and a banana. In howmany different orders can I eat them?
Formyfirst item I can pick one of three; formy second, there are only two left; and for
the last item, there is only one choice—so the answer is clearly W = 3 × 2 × 1 = 6.
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Fig. 3.1 Arranging labelled
balls in labelled slots

In general, we can imagine putting n labelled balls into n labelled slots. Its important
that both the balls and the slots are labelled. There are n ways to fill the first slot, and
then n − 1 choices for the second slot, and so on, as illustrated in Fig. 3.1. Then we
apply the multi-step multiplication rule, and the number of possible arrangements is
W = n!.

Now suppose the labels are taken off either the balls or the slots so that they
are indistinguishable. Then the number of distinguishable arrangements is just 1.
You could shuffle the balls around—or shuffle the slots around—and not know the
difference.

3.4.1 Arranging r Things Out of n

Howmany ways are there to arrange n things if they are taken r at a time? This is like
having r labelled slots and n labelled balls, where r < n. For example suppose I have
an apple, an orange, a banana, and an apricot, but I decide only to eat two things. The
number of ways is now W = 5 × 4 = 20. In general, we have the same slot-filling
process, but it stops earlier, so that W = n × (n − 1) × (n − 2)... × (n − r + 1).
This can be written as

Wperm = n!
(n − r)! =n Pr = P(n, r). (3.2)

The notation n Pr or P(n, r) is used because mathematicians refer to such arrange-
ments as permutations. It can be read as “perm r out of n”. With a little thought you
can see that putting r things into n slots—i.e. where we leave some of the slots empty,
as opposed to some of the balls unused—has the same number of permutations as
putting some of n things into r slots.

Another example might be picking two letters out of the list a, b, c, d. There
are twelve ways—ab, ac, ad; ba, bc, bd; ca, cb, cd; and da, db, dc. This is indeed
4!/(4 − 2)!. In setting out these choices, we have cared about the order or slot
labelling—ab is not the same as ba. But suppose we don’t care about the order?
That is the problem of picking subsets, which we look at next.
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Fig. 3.2 Picking a subset of
r balls from a larger
collection of n balls. We can
imagine first picking balls
for r slots, and then shuffling
the balls

3.5 Subsets or Combinations

How many ways are there to pick r objects out of n, if we don’t care how the r balls
are arranged? This is like having a box that can hold r loose balls. We could start
by temporarily imagining the box to have r slots inside it, with these slots labelled.
We can put balls into these slots nPr = n!/(n − r)! different ways, as above. Next,
imagine taking any one of those arrangements and shuffling the r balls, as illustrated
in Fig. 3.2—there are r ! different ways we could put the r balls in the r slots. If we
then imagine taking the labels off the slots, all those arrangements look the same, so
in our earlier total we have overcounted by that factor. Finally then, the number of
distinguishable subsets is

Wcomb = n!
r !(n − r)! =nCr =

(
n

r

)
= C(n, r). (3.3)

The notation nCr can be read as “choose r from n”. Subsets are usually known
by mathematicians as “combinations” which is why the symbol C is used. The other
notation

(n
r

)
is also popular, and could be read as “n over r” or again as “choose r

from n”.
Stirling’s approximation. Choosing two out of four pieces of fruit is simple

enough, but what if we are choosing 27 students out of a class of a 150? Or consid-
ering millions out of billions of molecules? Calculating large factorials is extremely
laborious. A convenient approximation is Stirling’s formula:

n! ∼ √
2πn

(n

e

)n
.

This is proved in many maths textbooks. It is fairly accurate for any n larger than a
few. For example, in the game of bridge, you select a hand of 13 cards from a deck of
52 cards. The order doesn’t matter, so the number of ways of doing this is 52!/13!39!.
Calculating those factorials by hand would take you a long time, but with Stirling’s
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formula you can quickly confirm that the answer is about 635 billion. For larger n,
it is often convenient to work with the natural log of n!, in which case

ln n! ∼ n ln n − n + 1

2
ln n + 1

2
ln 2π.

For very large n, this approximates further to

ln n! ∼ n ln n − n, (3.4)

which is the formyouwill seemost often in Physics textbooks. However, be careful to
use this only for n > 100 or so. For n = 10 the true value is ln n! = 15.014; Stirling’s
formula gives 15.096; but the n ln n − n version gives 13.026. This is a 13% error
in ln n!, and a factor of 8 error in n! itself. By n = 100 we have only a 1% error in
ln n!, although of course still a considerable error in n!.

3.6 Partitioning: Macrostates and Microstates

What if, rather than choosing a single subset of a pool of objects, we want to divide
up our pool of objects into a number of boxes? For example, we might have 40
children we want to divide into 8 different 5-a-side football teams in order to hold a
tournament. We could be said to be partitioning our collection of objects. Much of
Statistical Physics is based on the logic of partitioning—for example a large number
of atoms can each be in one of a number of different energy states. How many ways
can this happen, and which energy states are more likely to be populated? Lets start
by taking the easiest problem—dividing into two states or boxes.

3.6.1 Two-Box Problems

We have already solved this problem. In the subset-choosing problem above, when
we have picked the r balls, we have n − r left over. We have therefore partitioned our
n balls into a group of r and a group of n − r . This is therefore the same as dividing
our n balls amongst two boxes. In standard Physics terminology, if we specify how
many balls are in box A and how many in box B that tells us the macrostate. If
we specify exactly which balls are in box A and which are in box B, that tells us
the microstate. Older books refer to “configurations and complexions” rather than
“macrostates and microstates”. I rather like this older terminology because it is more
general, but many authors use “configuration” rather loosely to mean any of these
things, whereas “macrostate and microstate” are fairly unambiguous.
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Some systemswill continuously explore all the possiblemicrostates. For example,
if our boxes are imaginary regions of a container of gas, the motions of the gas
molecules will cause the populations of those regions to be constantly changing. A
system that, over time, spends equal amounts of time in each microstate is known
as ergodic. However, such a system will not spend equal amounts of time in a given
macrostate. The key question is—how many microstates correspond to the same
macrostate? We can refer to this as the multiplicity W of that macrostate. If the
i’th macrostate corresponds to Wi different microstates, then the total number of
microstates is N = ∑

Wi , and Pi = Wi/N is the probability of finding our system
in macrostate i .

3.6.2 Example: The Two-State Particle Problem

Suppose we have a number of particles, each of which has a quantum spin which
can be in one of two states, up or down. How likely is it that you will find all of the
particles in the up-state? Suppose we have just 4 particles and we distribute them at
random between the two states. If we take the macrostate (4, 0), that is, 4 particles in
the up state, and none in the down state, we can see that the number of microstates is
W = 1—there is only one way of doing this. On the other hand, for the macrostate
(2,2), we have W = 4!/(2! × 2!) = 6 possible microstates. So having the particles
evenly spread is six times as likely as them being all up. If the particles flip between
states at random, they will sometimes all be up; they should spend 1/2n = 1/16th of
the time in that macrostate. However many particles there are, there is only one way
of having them all in the up-state. For n = 10 the evenmacrostate (5,5) has W = 252
microstates. For n = 100 we get W = 1.01 × 1029; for larger numbers W becomes
enormously large very quickly. You can see that for realistic numbers of particles it
basically never happens that they are all in the up-state at the same time.

3.6.3 A First Look at the Second Law of Thermodynamics

The same logic applies to the classic gas-molecules all-at-one-end problem. Suppose
we divide a container of gas into two virtual boxes, by imagining an invisible dividing
line half-way across. If molecules move around the container at random, they will
sometimes by chance all gather in just one of the boxes—just very, very, very, very
rarely. More generally, if a system is in a state with some value of W below the
maximum, then the next state it finds itself in will almost always have a larger value
of W , simply because there are many more microstates to choose from. Roughly
speaking, this is the microscopic cause of the second law of thermodynamics; but
we will look at this issue more carefully in Chap. 14.
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3.6.4 Most Probable Macrostate

It is instinctively obvious that the macrostate with an equal population in each box
will have the most microstates, but lets prove this. Suppose we have n balls in total,
and put r in box A and n − r in box B. Let us suppose that r is less than n/2, and
so r < (n − r). Now suppose we move one ball from box A to box B, so that box A
now contains r − 1 balls. Lets calculate the multiplicity for the old macrostate and
the new macrostate.

Wr = n!
r !(n − r)! , Wr−1 = n!

(r − 1)!(n − r + 1)! .

Now we take the ratio of the two multiplicities, term by term

Wr

Wr−1
= n!

n!
(r−1)!

r !
(n−r+1)!
(n−r)!

= 1. 1r .(n − r + 1)

= n
r − 1 + 1

r

∼ n
r − 1

where in the last step we have assumed that both n and r are large. Because we started
by assuming that r < n/2 then the ratio of multiplicities is > 1. In other words, if
a box has less than half the balls, and we transfer a ball out, we will reduce the
multiplicity. At the maximum multiplicity, W (r) will be flat, so transferring a ball
will make no difference. We then find

Wr

Wr−1
= 1 =⇒ 1 = n

r
− 1 =⇒ r = n/2.

3.7 Multi-box Partitioning

Now suppose that rather than partitioning into two groups, we want to partition into
many groups. This is like putting our n balls into k boxes. The boxes are labelled (dis-
tinguishable), and we have n1 balls in box-1, n2 balls in box-2, etc. The values of n1,
n2 etc are the populations of each box. Thewhole set of numbers n1, n2, n3, . . . , nk is
the macrostate, or the configuration. If the balls are also labelled, we could exchange
balls between boxes, making many different distinguishable arrangements that cor-
respond to the same macrostates. These arrangements are the microstates or com-
plexions. Moving the balls around within a box makes no distinguishable difference.
These concepts are illustrated in Fig. 3.3
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Fig. 3.3 Partitioning 6 balls into 3 boxes. The upper two rows show two different macrostates.
The third row is the same macrostate as row (ii), as the boxes have the same populations—1, 3,
2—but its a different microstate, because different balls are in each box. The fourth row is the same
macrostate as row (ii), and is also the same microstate—the numbered balls in each box are the
same. Although the balls are drawn for the purposes of illustration in apparently different positions
from our “God’s eye” point of view, there are actually no distinguishable positions within the boxes

So howmany microstates are there for a given macrostate? We do this calculation
in a similar fashion to the two-box problem above. You could temporarily imagine
the boxes to have many little slots in, and once again initially consider these slots to
be labelled. There are n slots in total, across all the boxes, so we have n! arrangements
as usual. Now take the slot-labels off. Within any one box we can shuffle the balls
around and not know the difference; but we can’t shuffle balls between boxes because
we know which box is which. Considering box-1, there are n1! arrangements which
we have overcounted, and likewise for all the other boxes. So finally, the number of
distinguishable ways to achieve that macrostate is

W = n!
n1!n2!...nk ! =

(
n

n1, n2, . . . , nk

)
. (3.5)

3.7.1 Maximising Multiplicity for a Multi-box System

Just as with the two-box problem, the macrostate with the largest multiplicity is the
one with a uniform distribution. You can see this as follows. Consider two specific
boxes, and vary the number in each of those two boxes, while keeping the populations
of all the other boxes fixed. From our two-box analysis, we know that we will
maximise W if we make the population of those two boxes the same. However,
we can apply this logic to any two boxes. So all the boxes must have the same
population as all the other boxes.
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3.7.2 Continuous Systems

Suppose we want to consider the spatial distribution of molecules in a container.
Putting quantum physics to one side, this seems a problem because there are no
discrete boxes. However, we can arbitrarily divide space into cells, and use the above
logic to conclude that the most likely division is where there are equal numbers of
molecules in each cell. As long as we only care about the relative multiplicity, we
can apply this analysis for any cell size we like—the answer is always that a uniform
distribution is very strongly favoured. Quantum physics of course does give us a kind
of natural gridding of space, although the calculation is a bit subtle.

3.8 Systems with Extra Constraints

Suppose we are handing out prizes to a small class of 4 students. Each student either
gets a prize or no prize. How many different ways can we do that? Think of the
students as the balls, allocated at random to a no-prize box and a prize-box. The
number of ways is given by the usual two-box formula, and the macrostate with the
largest multiplicity is the one with two students in each prize category, with W = 6.
However, suppose we have only prize to give out. We can’t put two students in each
category. We have to put one student in the prize-box, and the other three in the
no-prize-box. There are W = 4 ways to do this.

Now, suppose we decide instead we have three prizes to hand out (perhaps for dif-
ferent categories of performance).We now have four boxes—no prize, one prize, two
prizes, three prizes. Most of the allocations of students to prize-boxes are not allowed
because we wouldn’t have enough prizes. There are just three allowed macrostates,
where the box populations are 3-0-0-1, 2-1-1-0, 1-3-0-0. These have multiplicities
of W = 4, 12 and 4. (Fairly obvious in for the first and last cases, but needs a little
bit more working out in the middle case.) It is in general much easier to populate
the “lower” levels, and the populations steadily decline. Averaging across all the
microstates, the four prize-boxes have average populations of, 2.0, 1.2, 0.6, and 0.2.
If we increase the number of balls and boxes, the decline becomes more and more
obvious. As we shall see below, for large numbers there is a simple analytic solution
to the box-population distribution.

3.8.1 Particle Energy Distributions

The most important physics example of a system with an extra constraint is the
distribution of particles amongst their allowed energy states, under the condition that
the total summed energy of all the particles is constant. Suppose we have a series of
possible states i , with an energy jump between each of size ε. For simplicity we will
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label the lowest energy state i = 0. There are ni particles in state i . Then we have
two constraints. The first is that the total number of particles is fixed:

n = n0 + n1... =
∑

i

ni ,

and the second is that the total energy is fixed:

E = 0 × n0 + εn1 + 2εn1... =
∑

i

iniε.

The sum over i runs to a large enough number to account for all the particles. Under
these constraints, what set of ni values, i.e. the population distribution, gives the
maximumW?Weproceed in a similarmanner to Sect. 3.6.1.We look at neighbouring
energy states, move particles between them, and argue that at the maximum of W this
will have no effect. Take the i’th energy state. We cannot simply move one particle
to its neighbour, because this will change the total energy. However we can remove
two particles and move one up and one down. Then the before and after values of W
are:

W = N !
n0!n1!n2!... , W∗ = N !

n0!n1!...(ni−1 + 1)!(ni − 2)!(ni+1 + 1)!... .

Taking the ratio of these we have

W∗
W

= ni (ni − 1)

(ni−1 + 1)(ni+1 + 1)
∼ n2

i

ni−1ni+1
,

where the last step assumes ni is large. If we then require the ratio to be 1, we find

ni−1

ni
= ni

ni+1
, and so

n0

n1
= n1

n2
... = ni

ni+1
= const.

A constant ratio is of course satisfied by an exponential function, i.e. we have shown
that the most likely population distribution is given by

ni = n0e−Ai . The Boltzmann distribution (3.6)

The value of the constant A can be found from the total energy E , and is of
course related to the temperature of the system of particles. We won’t fill out those
details here, which you can find in any textbook on Statistical Mechanics. The main
point here is to show that the exponential distribution comes from relatively simple
combinatoric considerations, and will also apply to any similar “sum-constrained”
situation.
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3.8.2 Lagrange Multiplier Method

Finally, a brief introduction to amore general method for solvingmaximisation prob-
lems with constraints. Consider a function of two variables, f (x, y). With standard
calculus techniques, we can find the x, y location where f is a maximum by set-
ting ∂ f/∂x = 0 and ∂ f/∂y = 0. This gives us two simultaneous equations which
we can solve for x and y. Now however, suppose that allowed values of x and y
are constrained to lie on the line y = ax + b. You can imagine tracking along that
locus, watching how f changes, and seeing where f comes to a maximum. This
will not in general be the same place as the unconstrained maximum of f . Any
such constraint can be expressed in the form g(x, y) = 0—in our straight line case,
g(x, y) = y − ax − b. The general way to solve such a problem is to define a new
function called the Lagrangian:

L(x, y, λ) = f (x, y) + λg(x, y),

where λ is a new variable called the “Lagrange multiplier”. We then set

∂L

∂x
= 0 and

∂L

∂y
= 0 and

∂L

∂λ
= 0,

which gives us three simultaneous equations to solve for x, y, λ. Usually we don’t
care about the value of λ, but we get the location x, y of the constrained maximum.

This technique can be extended to any number of variables x1, x2, . . . , xk , and
any number of constraints g1, g2, . . . , gm , and a Lagrangian L(x1, x2, . . . , xk, λ1,

λ2, . . . , λm). We then set each ∂L/∂xi = 0 and each ∂L/∂λ j = 0, which gives us
k + m simultaneous equations to solve. We can apply this general technique to our
multi-box partitioning problem. The k variables are the population values n1, n2, . . .,
with the function we want to maximise being W (n1, n2..) as in equation (3.5). The
constraint is that

∑
ni = n. We won’t wade through the solution of the k equations,

but you can then show that W is maximised if for all i , ni = n/k. In a similar fashion,
we can then add a second constraint, keeping E = ∑

iniε constant. This also leads
to the same solution we had before, an exponentially declining distribution in ni .

3.9 Key Concepts

Some of the key concepts from this chapter are:

• The distinction between distinguishable and indistinguishable elements
• How to calculate the number of permutations (ordered arrangements) of objects,
and the number of combinations (subsets)

• The difference between a microstate and a macrostate
• How to calculate the multiplicity of a macrostate
• The idea of maximising the probability of a macrostate.
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Key formulae in this chapter include: how to calculate the number of choices (3.1)
in amulti-step operation; the number of permutations (3.2) and the number of combi-
nations (3.3) when picking r objects from n; Stirling’s approximation for calculating
large factorials (3.4); the formula for the number ofways to do a “multi-bucket” parti-
tioning (3.5); and population distribution resulting from a sum-constrained situation,
i.e. the Boltzmann distribution (3.6).

3.10 Further Reading

The ideas and techniques of combinatorics are covered in all basic statistics textbooks,
but there are also textbooks dedicated specifically to combinatorics, with an example
being Cameron (1994). A very short, fun, and readable approach is inWilson (2016).

The application of these ideas in statistical physics is likewise covered in many
textbooks at a variety of levels. Two excellent books that we recommend here in
Edinburgh are Baierlein (2010) and Ford (2013). A much older book which I still
like very much, as it is so clear on the statistical underpinnings of the physics, is
Brown (1968).

3.11 Exercises

3.1 How many seating arrangements are there for a dinner party of 5? (Think it
through ... its not quite the same as a normal permutation..)

3.2 The e-reader known as “kobo” is clearly an anagram of “book”. How many
distinct anagrams could the designers have considered? Howmany would there have
been if they had been using “books” instead of “book”?

3.3 A departmental committee of senior professors must contain 3 men and 3
women. There 11 eligible male professors and 5 eligible female professors. How
many different committees can be formed?

3.4 How many different ways can you pick two five a side football teams from 12
students?

3.5 A cricket team takes a squad of 16 players on tour. For any one game, howmany
ways could you pick a team of 11 players? Calculate exact and approximate answers
and compare.

3.6 Six people are playing Dungeons and Dragons. Every ten minutes on average
the game involves all players except the Dungeon Master rolling a D20, that is, a
twenty-sided die. How long might we expect before everybody rolls a score of 20?
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Chapter 4
Counting Statistics: Binomial
and Poisson Distributions

4.1 Outline of Content

• The binomial distribution and its properties
• Variations on the binomial distribution
• Counting rare events
• Deriving the Poisson distribution
• Properties of the Poisson distribution
• Applications of the Poisson distribution

A large number of physical situations are at root “either/or” questions, or if you
like, “hit/miss” questions.We toss a coin—is it heads or tails?During the previous one
secondof time, did our radiation detector detect a beta particle or not?A simple yes/no
experiment like this is known as a Bernoulli trial, and the sequence of outcomes is
a Bernoulli process.

In such a Bernoulli process, we can count the hits, and ask questions such as—
after twelve tosses, whats the probability of getting four heads? Or nine heads? After
running our detector for a minute, whats the typical number of beta particle events? If
I find an average of say 3.7 events per minute, whats the probability I will actually get
6 events? Or no events? The solution to these “counting statistics” problems follows
smoothly on from our analysis of two-box partitions in the previous chapter. The key
extra feature we need is to allow the hits for each trial to have a different probability
from the misses. However, we will start with the simplest version, assuming that hits
and misses are equally likely.

4.2 The Binomial Distribution

4.2.1 The Simplest Hit-and-Miss Problem

Let’s proceed using our standard boxes-and-balls metaphor. The general idea is illus-
trated in Fig. 4.1. Box-A can be seen as holding the hits (getting heads, rolling a six,
seeing a particle event, etc). If we have n trials, the number of ways to put r balls in
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Fig. 4.1 How to distribute 3 balls amongst 2 boxes. On the left we show the four different
macrostates, with r = 0, 1, 2, 3. For the first two, we illustrate the different possible microstates.
To get the probability of each macrostate, we need to normalise its multiplicityW by the sum ofW
for all the possible macrostates

Box-Awill just beW (r) = nCr . If the two boxes are equally likely, then to turnW (r)
into a probability we just need to divide by the total number of microstates, across
all the possible macrostates, so that f (r) = W (r)/

∑
r W (r). The total number of

microstates is just
∑

W = 2n . Imagine taking each ball one at a time, and decid-
ing whether to place it in Box-A or Box-B. This is just the menu-choice problem,
so the total number of choices is 2 × 2 × 2 · · · = 2n . The net result then is that the
probability of getting r heads out of n coin tosses is

fn(r) =
(
n

r

) (
1

2

)n

= n!
r !(n − r)!

(
1

2

)n

.

We have written this as fn(r) to emphasise that we are interested in how this proba-
bility varies with r , for a given value of n.

4.2.2 Varying the Hit-Probability

What if the two boxes do not have equal probability? Suppose Box-A, the hit-box,
has probability p. For example, when rolling a six-sided die, if we are counting
sixes as the hits, then p = 1/6, whereas if we are tossing a coin and counting heads
as the hits, then p = 1/2. Box-B of course has probability 1 − p. Consider the
macrostate with r balls in Box-A, and n − r balls in Box-B. Lets think about a
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specific microstate corresponding to that macrostate, i.e. with r specific labelled
balls in the box. Imagine taking all the n balls one at a time and choosing where to
put them; there is a probability p of landing in Box-A and 1 − p of landing in Box-B.
The probability of getting all of the correct balls in box A is therefore pr . Likewise
the probability of getting a specific set of n − r balls in box B is (1 − p)n−r . The net
probability of that microstate is pr (1 − p)n−r . To get the probability of the parent
macrostate we multiply by the multiplicity W of that macrostate. Finally then the
probability of r successes is

fn,p(r) =
(
n

r

)

pr (1 − p)n−r = n!
r !(n − r)! pr (1 − p)n−r . (4.1)

This is known as the binomial distribution. The term “binomial” occurs in another
important place in mathematics, and the use of the same term is not a coincidence.
Consider expanding the expression (x + y)n for various values of n. For example
(x + y)3 = x3 + 3x2y + 3xy2 + y3. In general you can show that

(x + y)n =
∑

ar x
n−r yr where ar =

(
n

r

)

.

This is essentially the same result as our binomial distribution, with x and y playing
the parts of our two probabilities p and 1 − p. This happens because the coefficients
of the expansion are given by the number of different ways you can get r lots of y
and n − r lots of x .

4.3 Properties of the Binomial Distribution

Lets explore the binomial distribution and see how it behaves.

4.3.1 Mean Value of the Binomial Distribution

It is intuitively obvious that the mean (expected) value of r is just μ = np. If we toss
a coin 200 times, we expect 100 heads; if we roll a die 36 times we expect to get
6 sixes. Lets prove this however. Recall that the expected value of r for a discrete
probability distribution p(r) is

∑
r · p(r) and so in this case

μ =
n∑

r=0

[

r
n!

r !(n − r)! p
r (1 − p)n−r

]

.

The first term in the sum, with r = 0, is 0, so we can take this out. Next, note that
r ! = r(r − 1)!, so the r there cancels with the initial r . So we now have
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μ =
n∑

r=1

[
n!

(r − 1)!(n − r)! p
r (1 − p)n−r

]

.

Next, anticipating the answer, we can take out one factor of n and one factor of p
and get

μ = np
n∑

r=1

(
n − 1

r − 1

)

pr−1(1 − p)n−r .

Now we define q = r − 1 and m = n − 1 so that this becomes

μ = np
m∑

q=0

(
m

q

)

pq(1 − p)m−q .

However, the terms inside the sum are just the binomial distribution terms for our
new variables q and m. Because it is a normalised probability distribution, the sum
of these terms must add up to 1. So finally we have

μbin = np. (4.2)

Note that although the possible values of r can only be integers, their mean value
μ will generally be a real number, because the probability p is a real number.

4.3.2 Variance of the Binomial Distribution

The variance is given by σ 2 = E[(r − μ)2]. The sum can be solved by a very similar
technique to that shown above but we won’t wade through it. The answer is that

σ 2
bin = np(1 − p) = μ(1 − p). (4.3)

For the simplest case with p = 1/2 we get σ 2 = μ/2 = n/4. It is instructive to
look at the coefficient of variation: σ/μ = 1/n1/2. For large numbers of trials, the
distribution gets narrower in relative terms. For large numbers, this has a dramatic
effect. For n = 10, the uniform macrostate with r = 5 is 252 times more likely than
the macrostate with r = 0. For n = 1000 the macrostate with r = 500 is∼3 × 10299

times more likely than the state with r = 0; but it is even ∼5 × 108 times more
likely than the state with r = 400. By the time we reach the values appropriate to
the number of molecules in a box full of gas, the probability of being anything other
than a miniscule distance from the uniform macrostate is vanishingly small.
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4.3.3 Shape of the Binomial Distribution

Figures4.2 and 4.3 plot the binomial distribution for different values of n and p,
comparing two values of n (5 and 20) and two values of p (0.5 and 0.2).

For p = 0.5 the shape is always symmetrical. At low n the distribution appears
quite broad, but appears narrower as n increases, as shown by the algebra above.

For small p the shape is strongly asymmetric. As you increase n, the asymmetry
decreases, and is hardly noticeable even for a quite modest value like n = 20.

Notice also that the absolute value of the probability at the peak of the distribution
gets smaller with larger n. This is an example of the point made in Chap. 1, that the
absolute value of probability is not always what you want. The integrated probability
over a range is often more useful.

Fig. 4.2 Illustrating the
binomial distribution for
n = 5 and two different
values of p. The horizontal
lines indicate ±1σ from the
mean; but note that the
p = 0.2 curve is not
symmetrical. Note that the
distribution is only defined at
discrete values of m; a
smooth curve has been
drawn however using the Γ

function, as explained in the
text
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Fig. 4.3 Binomial
distribution for the slightly
larger value of n = 20. Even
the smaller p version is now
almost symmetrical
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4.3.4 Continuous Approximation to the Binomial
Distribution

The function representing the binomial distribution is only defined at integer values
of r ; however we can plot a smooth curve through these points using the gamma
function, which is equal to the factorial for integer values:

Γ (n) = (n − 1)! where Γ (z) =
∫ ∞

0
t z−1e−tdt.

This can be useful for calculations, but also simply to make smooth plots.

4.4 Variations on the Binomial Distribution

There are some variations on the binomial that come in handy in various circum-
stances.

4.4.1 The Negative Binomial Distribution

Imagine a series of children each exposed to a virus, with a probability p that each
child will catch the virus. What is the probability that the x th child will be the kth
one to catch the virus? The answer is

bk,p(x) =
(
x − 1

k − 1

)

pk(1 − p)x−k .

This is known as the negative binomial distribution or sometimes as the binomial
waiting time distribution. A useful special case is where k = 1, i.e. the probability
thatwe have towait until the x th trial to get the first hit. This is known as the geometric
distribution and is given by

gp(x) = p(1 − p)x−1.

4.4.2 The Hypergeometric Distribution: Binomial Without
Relacement

Imagine an urn containing N balls of which W are white and N − W are black. If
we pick a ball at random it has probability p = W/N of being white. If we pick n
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balls in succession, what is the probability that r of the n will be white? The answer
depends on whether we replace the balls after each pick. If we do replace the balls,
then the probability p = W/N is the same for each pick, and the situation is exactly
like our standard binomial case. However if we do not replace the balls, we get the
Hypergeometric distribution

P(r) =
(W
r

)(N−W
n−r

)

(N
n

) .

4.4.3 The Multinomial Distribution

In Chap.3 we looked at how to partition N objects into k boxes, and derived the
number of ways to achieve this partition. To complete the picture, if rather than
having equal probabilities we have a situation where box i has probability pi , defined
of course so that all the pi values add up to 1, then the joint probability of getting r1
objects in box-1, r2 objects in box-2 and so on is given by

f (x1, x2, . . . , xk) =
(

N

r1, r2, . . . , rk

)

pr11 pr22 . . . prkk .

This has direct relevance to many statistical physics problems. Particles may for
example be distributed at random amongst various quantum states with differing
energy. If the states are equally likely, but with the total energy of the system con-
strained, then we will end up with the Boltzmann distribution equation (3.6). How-
ever, the energy-states may not be equally likely; theremay be several quantum states
with the same energy, and so the distribution is adjusted by the “degeneracy” of each
energy state.

4.5 Counting Rare Things: The Poisson Distribution

The Poisson distribution is a special case of the Binomial distribution, where p → 0
and n → ∞, such that the mean μ = np remains a finite, middling sort of number.
Why is this useful?

Imagine a radiation source emitting alpha particles which we detect with a Geiger
counter and hear as a series of clicks. For a large piece of radioactive material, the
rate of clicks is quite fast, and seems to be more or less constant. For a smaller piece
of material perhaps we are down to something like two clicks per second, but now
it seems to be quite erratic—sometimes there are four or five clicks in a second, and
sometimes none. Why does this happen? Can we predict the distribution of clicks
per second?
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The trick is to consider each second of time for a single atom as an individual
hit-or-miss trial, but the behaviour of all the atoms in the lump of material as the n
repeats. The probability p of an individual atom emitting a particle in that second
is extremely small; but the number of atoms n is extremely large. Then the overall
number of events per second will follow a binomial distribution with very small p
and very large n. As another example, imagine a large department store that sells
expensive diamond rings. Thousands of shoppers glance at the rings, but there is
only a small chance that any one person will buy one. However, over time, the shop
perhaps finds that it consistently sells an average of 2.7 rings per week. What then
is the chance that in a particular week none will be sold, or six?

In principle, if we know p and n, we could treat such problems with the binomial
formula. However, in the limit of very small p and very large n we can show that
the distribution only depends on the mean μ, so that we don’t need to know p and
n. Lets look at how to prove this.

4.6 Derivation of the Poisson Distribution

The Poisson distribution is a special case of the binomial distribution, where p → 0
and n → ∞, in such a way that the product μ = np remains finite. We can write the
binomial distribution as

1

r !
n!

(n − r)! pr (1 − p)−r (1 − p)n

1 2 3 4 5

Lets look at the five terms one by one. Term 1 we will just leave. Term 2 is
n(n − 1)(n − 2) · · · (n − (r − 2))(n − (r − 1)). This is made of r factors, where
each is �n because n is large; the second term therefore tends towards nr . Taking
the second and third terms together, we have nr pr = (np)r = μr .

Term 4 , (1 − p)−r , is a multiplication of r factors each of which is very close to
1 because p is small; so this term tends towards 1. For the final term, (1 − p)n , we
cannot assume all factors equal to one; even though each factor is arbitrarily close to
1, an arbitrarily large number of them are multiplied together. Instead, we expand as
a power series. The McLaurin series approximation for (1 + y)α is 1 + αy + α(α −
1)y2/2! + α(α − 1)(α − 2)y3/3! . . .. This give us

1 − pn + p2

2! n(n − 1) − p3

3! n(n − 1)(n − 2) . . .
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The various n − 1, n − 2 factors are all �n so this becomes

1 − pn + (pn)2

2! − (np)3

3! .

However, recall the series expansion for ex = 1 + x + x2/2! + x3/3! . . . so our series
is just e−np = e−μ. Finally putting all the terms together we get the the result:

fμ(r) = μr

r ! e
−μ. (4.4)

The probability is written as fμ(r) to emphasise that we are seeing this as a distri-
bution over r for a given μ. Note that like the binomial, it is a discrete probability
distribution. It is defined only at integer values of r = 0, 1, 2 . . .. On the other hand,
the mean μ is a continuous real number.

4.7 Properties of the Poisson Distribution

4.7.1 Variance of the Poisson Distribution

ThePoissondistribution is definedby itsmeanμ, butwhat is its variance?Because the
Poisson distribution is a special case of the binomial, we can consider an imaginary
combination of n and p which gives the right mean μ = np. The variance is then
np(1 − p). However because p is small, this is just �np. In the limit then we have
the striking result that for the Poisson distribution

σ 2 = μ, (4.5)

or equivalently that the standard deviation is equal to the square root of the mean.

4.7.2 Shape of the Poisson Distribution

Figure4.4 plots the Poisson distribution for various values of μ. The distribution is
only defined at discrete values of r , but as before we have used the gamma function
to plot smooth curves through the distribution. For small values of μ, the distribu-
tion is highly asymmetric; with increasing μ it becomes increasingly symmetrical.
Figure4.5 compares the Poisson and Binomial distributions, picking a fixed value
of μ = 1.5 and using different n, p pairings all of which have the same binomial
mean μ = np. It can be seen that the binomial distribution converges on the Poisson
distribution quite rapidly.
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Fig. 4.4 The Poisson
distribution for a range of
means, indicating how it is
very asymmetric for low
means, and becomes more
symmetric at larger means.
As with the binomial
distribution, the Poisson
distribution is defined only at
discrete values, but we have
drawn a smooth curve using
the Γ function
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4.8 Applications of Poisson: Counting Statistics

The term “counting statistics” refers to any situation where the binomial distribution
applies, but it is often used in reference specifically to the Poisson distribution limit,
because it so often works for situations where we count the number of objects or
events—for example the counts per second caused in a Geiger counter by a radiation
source, or the number of people replying to an online advert. In these cases, the
uncertainty is completely determined by themean; if in a single run of the experiment
we get N counts, that gives our estimate of the true mean, μ = N , and the error on
our estimate is just ±√

N .

4.8.1 Why Large Samples Are Better

In experimental design, it is important to realise that the counting statistics error is
unavoidable. We cannot design a perfect experiment that has no error, as long as
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our measurement involves some random counting of events. However, note that an
implication of the Poisson distribution is thatmeasurements producing large numbers
are more precise than those with small numbers—the coefficient of variation is
σ/μ = √

N/N = N−1/2.
Suppose for example we wish to estimate the count rate R, photons per second,

of the light from a star. Lets say that we integrate for 10 s and get 13 counts. The
estimated rate is R = 13/10 = 1.3 and the uncertainty is 130.5/10 = 0.36, which is
28%of our estimate. If we integrate for 1000swemight get say 12,176 counts, giving
R = 0.122 and an uncertainty of 12,1760.5/1000 = 0.11, which is now only 9% of
our estimate. So althoughwe cannot completely avoid counting statistics uncertainty,
we can minimise its effect by designing an experiment to have large count rates.

4.8.2 The Something-or-Nothing Problem

The number of people who reply to a online advert should follow Poisson statistics—
presumably large numbers of people glance at my advert, but nearly all of them are
uninterested. In a given week, what is the probability somebody replies to my advert?
I would be equally happy if I get one, two, three or more replies—just unhappy if I
get none. There is of course no need to add up P(1) + P(2) + · · · . The probability
of at least one success is

p(> 0) = 1 − p(0) = 1 − e−μ.

In the something-or-nothing problem, a count rate of μ ∼ 1 is a qualitative dividing
line. For example, for a mean count rate of μ = 0.2 we get p = 0.18. We usually
get nothing. For μ = 1.0 we get p = 0.63, close to an even chance of something or
nothing. For μ = 5 we get p = 0.993—almost always something.

4.8.3 Cautions

There are two typical circumstances where it is common to apply Poisson statistics
incorrectly. First, the small number caution. Note that when dealing with small
numbers, the Poisson distribution is very asymmetric, so the rule-of-thumb

√
N

error shouldn’t be seen as a symmetric “±√
N” guide. Consider the μ = 2 curve

in Fig. 4.4. Although the r = 1 and r = 3 values are equally distant from the mean,
r = 3 is much more probable than r = 1.

The second caution is about the tendency to assume that Poisson statistics applies
whenever we have an experiment that involves counting events. Suppose people
buying ice-cream in a cafe can choose between strawberry and vanilla. It is noted that
on an average day N = 25 people choose vanilla. Does this mean that day-to-day this
has a spread given by σ = 5? It does not. In general, the number of people choosing
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vanilla will follow the binomial distribution. Suppose people choose randomly, so
that p = 1/2. Then, for our N = 25 vanilla-choosers, there must have been n = 2N
trials in total, and σ = √

N/2, not
√
N . In general for the Binomial, as we saw in

Sect. 4.3.2, σ 2 = μ(1 − p). The Poisson result of course follows directly from this
and p → 0. The number of vanilla-choosers will only follow Poisson statistics if
vanilla is extremely unpopular.

4.9 Key Concepts

Some of the key concepts from this chapter are:

• The binomial distribution and how it changes shape with p and n
• The idea of a limiting case of the binomial distribution where we select rare events
from a large pool

• The fact that the Poisson distribution is determined only by its mean, as this
automatically fixes the variance

• The way that the shape of the Poisson distribution changes with mean μ

• The use of the Poisson distribution in a wide variety of “counting statistics” prob-
lems

• The idea that relative error improves with sample size.

Key formulae in this chapter include: the binomial probability distribution (4.1)
and the formulae for its mean (4.2) and variance (4.3); the Poisson distribution
formula (4.4), and the formula for the variance of a Poisson distribution (4.5).

4.10 Further Reading

The Binomial and Poisson distributions are of course covered in all standard statis-
tics textbooks—see the Chap. 1 references. A short, and lively introductory e-book
specifically about the binomial distribution is Hartshorn (2017).

The Binomial and Poisson distributions were amongst the first probability dis-
tributions to be understood, because they are at the heart of the gambling problems
which so fascinated early mathematicians. If you find these early developments, and
the stories attached to them, interesting, a standard book on the history of statistics
is Stigler (1990).

A particularly fascinating story is how one of the pioneers of modern statistics,
Ronald Fisher, used a binomial distribution analysis to claim that the famous results
of Mendel were possibly fudged, because they were more perfect than they ought to
have been (Fisher 1936). This claim has been the source of argument ever since. A
definitive study of this controversy is the book by Franklin et al. (2008).
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Calculating binomial coefficients can be very cumbersome. In the next chapter,
we will look at how to use the Gaussian distribution to approximate the binomial.
Meanwhile, an excellent way to calculate binomial coefficients is using the Geogebra
online calculator.

4.11 Exercises

4.1 Ten patients have a form of cancer from which the recovery rate is 80%. What
is the probability that exactly 7 of them will recover? What is the probability that
exactly 3 of them will recover? What is the probability that 7 or fewer will recover?

4.2 Consider rolling a die n times and noting how many sixes are rolled. How large
does n have to be for the coefficient of variation to be less than 0.1?

4.3 It has been suggested that the probability of passing a driving test on any one
attempt is 0.75. What then is the probability that an applicant will pass only on the
fourth attempt? Comment onwhether the implied assumption in the question is likely
to be correct.

4.4 A government inspector checks whether the lorries run by haulage companies
have exhaust emissions compliant with the law. She turns up at a company and picks
6 lorries at random to inspect. One particular company has 24 lorries, and the truth is
that 4 of them are defective. What is the probability that the inspector will find none
of the defective lorries?

4.5 A shop sells fabric on a roll that is 1m wide. They find that typically there is a
defect in the fabric once every 5m length. They don’t like to sell a length of fabric if
it has four or more defects. A customer wants a 30m length. What is the probability
that this will have four or more defects?

4.6 In Sect. 4.6 we derived the Poisson distribution as the limit of the Binomial
distribution, and then took it as obvious that the mean was μ because μ = np for
the Binomial. Working from the formula for the Poisson distribution itself, can you
show that the mean is equal to the μ in the formula?

4.7 You are trying to spot a small bird through a distant clump of trees. In this clump,
there are on average 0.033 trees per square metre, but the trees can be regarded as
being distributed randomly. Each tree is 0.7m wide, and the clump is 57m thick. At
anyonemoment in time,what is the probability that the bird is hidden fromyour view?
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Chapter 5
Combining Many Factors: The Gaussian
Distribution

5.1 Outline of Content

• A common distribution in diverse circumstances
• Physical origin of Gaussian distributions
• The Gaussian as the limiting form of the binomial
• Properties of the Gaussian
• How random variables combine
• The Gaussian form as a fixed point for convolutions
• Multi-variate Gaussians
• Gaussians in disguise: particle velocities and stellar masses
• Error distributions

Figure5.1 shows three diverse examples of naturally occurring distributions—
cluster star velocities, human heights, and the distribution of the sum of the last four
digits of phone numbers in my address book. They all show a very similar shape—
symmetrical, with a “bell curve” shape. They can all be reasonably well fitted by the
same mathematical expression, which we will come to shortly. This mathematical
form is named the “Gaussian Distribution”, after Carl Friedrich Gauss, but it is often
referred to as the “NormalDistribution”, because it occurs so frequently inNature.An
important Physics example is the distribution of molecular velocities. Although the
Maxwell–Boltzmann distribution for molecular velocities looks somewhat different,
it is really a Gaussian in disguise, as we will see later in this chapter. How can such
completely different physical circumstances produce the same result? The answer
lies in what happens mathematically when many different factors combine. Before
we start to examine how this works, lets take a closer look at the distributions in
Fig. 5.1.
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Fig. 5.1 Examples of
naturally occurring
distributions of
observed/measured
quantities, all showing an
approximation to the classic
“bell curve” shape. In all
three cases the dashed curve
shows a Gaussian curve
which fits the data. Top: The
line of sight velocities of
stars in the globular cluster
M92 (Drukier et al. 2007);
Middle: Heights of female
subjects in the classic study
by Galton (1886); Bottom:
The sum of the last four
digits of numbers in my own
address book
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5.2 Rescaling to Reveal a Universal Distribution

The sample distributions in Fig. 5.1 are more than just qualitatively similar; they are
essentially identical. We can see this with a little simple re-scaling. Of course the
distributions all have different units, different means, and different widths. We can
remove these particularities by calculating the sample mean x̄ and sample variance
s2 for each dataset. The next step is to convert each x value to its deviation from
the mean value, normalised to the standard deviation, z = (x − x̄)/s. The sample
distributions look symmetrical; lets assume this, so really we just want the size of the
deviation. We could consider |z| but instead we shall use z2. In Fig. 5.2 we look at the
binned distribution of this normalised square deviation, z2, for the star velocity and
phone datasets. They look very similar, and also look as if they decline exponentially.
To test this idea, we take each histogram point and normalise to the peak value; and
we then plot the log of the normalised number versus z2, putting the two datasets on
the same plot. As you can see in the lower frame of Fig. 5.2, the rescaled datasets
agree well with each other. The shape of the various distributions is not just similar,
its identical.

Empirically then, we have suggestive evidence that the population distributions
underlying each of these sample distributions has the form

f (z) = A e−kz2 with z = (x − μ)/σ.

All the distributions have the same values of A and k, but they have differing values
of μ and σ . We can estimate k by seeing where f drops by a factor of 1/e, i.e. a
factor of −1.0 in ln f . To a good approximation, this suggests k = 1/2. To fix the
value of A, we take f (z) to represent a probability density function, and so require
that ∫ ∞

−∞
f (z)dz = 1.0.

Now, the integral of e−z2 is equal to π1/2 (not proved here, but it is in standard maths
textbooks), and so we find A = 1/

√
2π . Note that this value of A gives us the correct

normalisation if f (z) is the probability density per unit z. Alternatively if we express
the density per unit x , this brings in a factor 1/σ . In summary, we have

f (x) = 1

σ
√
2π

exp

[
−1

2

(
x − μ

σ

)2
]
or f (z) = 1√

2π
exp

(
− z2

2

)
. (5.1)

This mathematical form is the Gaussian distribution, with the version on the right
being the standard form.
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Fig. 5.2 Rescaling tests for
datasets from Fig. 5.1, as
described in the text. Top:
Re-scaled star velocity data
Middle: Re-scaled
phonebook data. Bottom:
Comparing the normalised
distribution for the
phonebook data and the
height data
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5.3 Properties of the Gaussian

Above, we have arrived at a guess for the mathematical form, based on observed
data. In the next section, we will look at how this mathematical form arises. But first,
let us look at some of the properties of the Gaussian distribution.

5.3.1 Moments of the Gaussian

Figure5.3 illustrates the Gaussian function, showing the well known “bell curve”
shape. It is positive at all values of x , for all positive values of σ . Let us consider the
moments of this function, mn = E[xn f (x)], as defined in Chap.2, Sect. 2.5.2. The
zeroth moment,m0 = ∫

f (x)dx = 1.0—in the previous section we in fact found the
normalising factor 1/

√
2π which makes this true. The first moment, m1 is the mean

of the function f (x). The fact that this is the same as the μ as used in the definition
of f (x) is obvious from symmetry. For higher moments, we use the central moments
μn = E[(x − μ)n f (x)].

The second central moment is the variance, μ2 = V (x). It might seem obvious
that μ2 = σ , as we derived our educated guess for f (x) based on the normalised
deviations for our sample data. However, if we take f (x) as our definition, we can
check that

∫ ∞
−∞(x − μ)2 f (x)dx does in fact return σ . In order to do this, the trick is to

manipulate the integral until it looks like the gamma function,Γ (z) = ∫ ∞
0 t z−1e−tdt .

We will then have reduced our problem to a previously solved one. This suggests
that we use the transformation

t = 1

2

(x − μ)2

σ 2
and so

dt

dx
= (x − μ)

σ 2
=

√
2t

σ
.

Fig. 5.3 Gaussian
distribution, illustrating the
amount of probability within
different regions of the
curve, with shaded areas at
±1σ, 2σ, 3σ and above
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Next, because f (x) is symmetrical, the integral between plus and minus infinity can
be replaced by twice the integral between zero and infinity. Then we have

V (x) = 2
1

σ
√
2π

(x − μ)2
∫ ∞

0
exp−1

2

(x − μ)2

σ 2
dx

= 2

σ
√
2π

tσ 2
∫ ∞

0
e−tdt.

σ√
2t

= 2σ 2

√
2π

1√
2

∫ ∞

0
t1/2e−tdt

= 2σ 2

√
π

Γ (3/2).

Finally, standard mathematics texts will show us that Γ (3/2) = √
π/2, and so we

confirm that indeed V (x) = σ 2.
The third central moment μ3 gives us the skewness α3 = μ3/σ

3, as described in
Chap.2, Sect. 2.5.4. As f (x) is symmetrical, the skewness is zero. The fourth central
moment μ4 gives us the kurtosis α4 = μ4/σ

4. It can be derived in a similar fashion
to the variance. The result is that μ4 = 3σ 4, so that α4 = 3. Because the Gaussian
distribution is so common, it is common practice to compare other distributions to the
Gaussian, and so define the excess kurtosis as α4 − 3—see the examples in Fig. 2.6.

5.3.2 Integrated Probability Within Standard Regions

A common practical question is to ask how likely ameasurement is to be within some
range. You can see that this integrated probability depends on distance from themean
in multiples of σ—in other words, the z value of the standard form. Unfortunately,
although the definite integral over all z has a well known value, the indefinite integral
does not have an analytic solution. However we can integrate approximately, either
by making a power series approximation, or by summing trapezoids in the usual
fashion. Furthermore, this is such a common question that of course the problem has
been solved many times, and so standard tables and/or programming routines exist.

Figure5.3 shows the fractional area under the curve for various ranges of z. The
fraction of measurements falling within ±1σ of the mean is 68.3%; within 2σ is
95.4%, andwithin 3σ its 99.7%. Events outside this range are therefore very unlikely;
if we see too many such events we may suspect that there is something anomalous
(and therefore important) happening. We will follow that logical trail when we study
statistical inference in part III.
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5.4 Physical Origin of Gaussian Distributions

We have seen that somehow Nature produces an almost universal frequency distri-
bution in a diverse range of circumstances. How does this come about? The common
element in the situations we have looked at is that the distribution arises from the
combination of many elements or factors.

Sometimes this happens through the simple addition of quantities. Lets look at
the phone book example. If we take any one of the digits, we should get a random
number uniformly distributed between 0 and 9. In practice, we will indeed get a
uniform distribution for the last digits, but not for the early digits—many of my
numbers come from the same area code for example. The distribution of last digits
will have a mean of 4.5, but will have a flat “top-hat” distribution. The sum of four
such digits has a mean of 4 × 4.5 = 18 but now has the bell-curve distribution rather
than a flat one, as we see in Fig. 5.1. This seems qualitatively reasonable—there is
for example only one way to get a score of 36, i.e. four 9s, but a number of different
ways to get a score of 22.

Sometimes the combination of factors seems to be more complicated. The height
of a person is likely to be the result of many factors conspiring together—a number
of different genes, some inherited from each parent, the person’s diet, their medical
history, and so on. Any one of these factors will have its own probability distribution.
If the combination of these effects is additive, or equivalently some kind of averaging
effect, then the situation is not so different from our digit-adding case, and the net
effect is a normal or Gaussian distribution. Very often, as in the human heights
example, we won’t have a full quantitative understanding of the factors involved,
and sometimes we won’t even know what the component effects are—but Nature is
still doing the averaging, and a Gaussian distribution results.

Finally, rather than being the effect of adding physically separate quantities, a
quantity may be the result of repeated drawings from the same distribution, either
in real practice or conceptually. For example, although the binomial distribution is
mathematically different from the Gaussian, for a large number of trials n, the shape
becomes very close to Gaussian. This is because n trials can be seen as equivalent
to combining n single trials (Bernoulli trials) each of which has an even chance of
scoring 1 or 0. In Sect. 5.7 we will look more closely at the relation between the
binomial and Gaussian distributions.

The key issue seems to be the effect of adding random variables. How does that
work mathematically?

5.5 Mathematical Origin of the Gaussian: Adding Random
Variables

It seems that to understand the Gaussian we need to understand the addition of
random variables. Let us start with just two variables. Suppose we have two random
variables x and y, and form a third random variable as z = x + y. Wewill assume for
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Fig. 5.4 Illustrating integration over the half-plane, as described in the text

simplicity that we are dealing with independent continuous variables. If the variable
x has PDF f (x) and the variable y has PDF g(y), what will be the resulting PDF of z,
p(z)? The way to solve this problem is to work in terms of cumulative distributions
or CDFs, and then differentiate at the end. We will denote the equivalent CDFs with
capital letters, i.e. F(x) etc.

5.5.1 Integration over the Half-Plane

The joint PDF at x, y is f (x)g(y). Suppose we pick a value of z = z1 and ask, what
is the cumulative CDF, P(< z1)? We need to sum up all the f (x)g(y) values over
the x, y plane, but only at those points that satisfy x + y ≤ z1. In Fig. 5.4 we show
the line y = z1 − x ; the points we need to add up are all those to the left of this
diagonal line. Other possible values of z are indicated by the dotted lines. To do this
half-plane integration, start with a strip at y with width dy, and sum all the values
from x = −∞ to x = z − y, as illustrated in the dark grey strip in the figure. Having
integrated over that strip, we repeat for all values of y, as shown in the lighter grey
strips. Finally we can see that the CDF must be

P(z) =
∫ y=+∞

y=−∞

∫ x=z−y

x=−∞
f (x)g(y)dxdy.

Of course we could just as well integrate over all x , and y to z − x . The integral of
f (x) up to z − y is just the value of the CDF F(x) for x = z − y, i.e. F(z − y), so
we can write

P(z) =
∫ y=+∞

y=−∞
F(z − y)g(y)dy.
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Nowwecandifferentiate to get p(z) = dP/dz. Because z = x + ywehavedF/dz =
dF/dx so in differentiating F we just get back the density f . So finally we get

for z = x + y : p(z) =
∫ y=+∞

y=−∞
f (z − y)g(y)dy. (5.2)

The mathematical form we have just arrived at is known as the convolution of two
functions, and comes up in many different areas of physics. It is sometimes written

p = f � g.

The conclusion then is that the PDF of the sum of two random variables is the
convolution of the PDFs of the two original variables.

5.5.2 Understanding Convolutions

The equation above may seem a little opaque. What is happening? In words, we can
see the convolution as made of four operations—flip, shift, multiply, add.

• flip: f (y) → f (−y)
• shift by z: f (−y) → f (−y + z)
• multiply: for a given shift z, at each y, calculate m(z, y) = g(y) × f (−y + z)
• add: for a given z, repeat and sum over all y, to give p(z) = ∫

m(z, y).

Note that if f (y) is symmetric, the flip makes no difference, and the remaining three
operations are known as “correlation”. The idea is probably best seen pictorially. In
Fig. 5.5, we show graphically how to convolve/correlate a simple “top hat” function
with itself. Here f (y) = g(y) and each is defined so that g(y) = 1 over some range,

Fig. 5.5 Illustrating the convolution of a top-hat function with another top-hat. The varying values
of z correspond to sliding one of the functions past the other, as shown in the upper panel. The
product of the two functions in this case is just the overlapping area, indicated by the shading. The
change in resulting values of p(z) are shown in the lower panel
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and is zero outside that range. The function g(y) is drawn as a top hat with a solid
line, and f (y) as a similar top hat with a dotted line, but shifted by an amount z
changing from frame to frame. The product f × g is 1 where the top-hats overlap,
and zero outside this; so the integral is just the shaded area in each case. You can see
that as you try different values of z, the output p(z) is a triangle. In algebraic terms,
if we have

f (x) = g(y) = 1 when 0 < x < 1
= 0 otherwise

z = x + y
p(z) = f � g.

Then you can easily see that

for z < 0 p(z) = 0
for 0 < z < 1 p(z) = z
for 1 < z < 2 p(z) = 2 − z
for z > 2 p(z) = 0.

5.6 Repeated Convolutions Leading to the Gaussian

We have seen that adding two random variables leads to a convolution of their
PDFs. If we combine more random variables then, we will get repeated convolu-
tions. Figure5.6 shows the effect of adding a third top-hat variable; the result is
already a curved shape that is starting to look a little like the Gaussian. Numerical
experimentation shows that more convolutions leads quite rapidly to a shape close
to the Gaussian. But what is going on mathematically? The proposal that repeated
convolution leads inexorably to the Gaussian form is known as the Central Limit
Theorem. It is possible, within certain constraints, to prove this rigorously, but the
proof is somewhat laborious, and involves some mathematics (Fourier transforms)
that I have been trying not to assume in this book. However, we can show some-
thing simpler, and nearly as good. The Gaussian has a very special property—if you
convolve it with itself, you get another Gaussian.

5.6.1 Convolving the Gaussian

To simplify the algebra we will assume two identical Gaussians in standard form,

f (x) = f (y) = 1√
2π

e−y2/2,

and then form z = x + y so that p(z) = f � f
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Fig. 5.6 Repeated convolution gradually moves us toward the normal curve

p(z) =
∫ +∞

−∞
f (z − y) f (y)dy = 1

2π

∫ +∞

−∞
e− (z−y)2

2 e− y2

2 .

Taking the terms inside the exponential, these add to give a combined exponent

− z2

2
+ zy − y2

2
− y2

2
= − z2

2
+ zy − y2.

Anticipating the answer we want, we can re-write this as

− z2

4
+

[
− z2

4
+ zy − y2

]
= − z2

4
−

[(
y − z

2

)2
]

.

So we get

p(z) = 1

2π
e− z2

4

∫
e−(y−z/2)2dy = 1

2π
e− z2

4
√

π

[
1√
π

∫
e−(y−z/2)2dy

]
.

The expressionbeing integrated inside the square brackets is aGaussianwithμ = z/2
and σ = 1/

√
2, and so it integrates to 1. So finallywe find that the convolved function

is

p(z) = 1√
4π

e−z2/4.

This is a Gaussian with mean zero and variance σ 2 = 2. So by convolving two
Gaussians we get another Gaussian with twice the variance. More generally if we
convolve two Gaussians with means μ1, μ2 and variances σ1, σ2, we get a new
Gaussian with

μ = μ1 + μ2 and σ 2 = σ 2
1 + σ 2

2 . (5.3)
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Note that the variances add, not the standard deviations. The standard deviations
are said to “add in quadrature”. This is of course the same as the result we found
in equation (2.10) when discussing the transmission of variances. Equation (2.10) is
more general—variances always combine in quadrature, regardless of the underlying
distributions—with this result for the Gaussian distribution being an example of the
more general result.

5.6.2 The Gaussian as a Fixed Point for the Convolution
Process

Whatwehave shown is that theGaussian is a fixed point for the convolution process—
that is, once you have arrive at a Gaussian form, you won’t go anywhere else. It
doesn’t strictly prove that from any given starting point you must end up there, but it
does make it seem reasonable. In fact, a large variety of distributions head towards
the Gaussian on repeated convolution, but it doesn’t always happen. An important
exception is the Cauchy/Lorentz distribution, which we will meet in the next chapter.
If you convolve a Lorentzian, you get another Lorentzian, and it is therefore a distinct
fixed point for the convolution process.

5.7 The Gaussian as a Limiting Form for Other
Distributions

The averaging process means that many distributions have the Gaussian as a limiting
form. For example, the binomial tends towards the Gaussian for large numbers of
trials n; the Poisson distribution tends towards the Gaussian for large values of the
mean μ; and the χ2 distribution, which we will meet in part III, tends towards
the Gaussian for large numbers of data points N . Let us look at the binomial case
carefully.

5.7.1 Limiting Form of the Binomial Distribution

Suppose we toss a coin n times and ask how often we get heads. The probability of
getting r heads will be given by the binomial distribution with p = 1/2. The mean
value of r will be μ = n/2, and the variance will be σ 2 = np(1 − p) = n/4 = μ/2.
Suppose we consider a small deviation from the mean value, with r = μ + q. Then
the probability of getting a given value of q is
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P(q) =
(
1

2

)n n!
(μ + q)!(μ − q)! .

Next, consider P(q + 1).

P(q + 1) =
(
1

2

)n n!
(μ + q + 1)!(μ − q − 1)! .

Taking the ratio P(q)/P(q + 1) we find that

P(q + 1) = P(q)
(μ − q)

(μ + q + 1)
.

From this, and noting that Δq = 1 we find that

ΔP

Δq
= P

(
μ − q

μ + q + 1
− 1

)
= P

(
μ − q − μ − q − 1

μ + q + 1

)
∼ P

(−2q)

μ
,

with the last step following if μ >> q. From this we can write

dP

P
= −2q

μ
,

which has the solution

ln P = −q2/μ i.e. P = P0e
−q2/μ = P0e

−q2/2σ 2
,

and this is just the Gaussian mathematical form in the deviation from the mean, as
required.

5.7.2 Limiting Form of the Poisson Distribution

The Poisson distribution also converges on the Gaussian. This is illustrated numer-
ically in Fig. 5.7. You can see that by μ = 12 the correspondence is already pretty
accurate. Of course, this is not too surprising, as the Poisson process is itself a limit-
ing form of the binomial distribution, with small p value, so it is fairly obvious that
for large μ the Poisson distribution will look normal, with σ 2 = μ. Another way to
look at this is that within a small region of x , the probability density is effectively
the average of many local samples.
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Fig. 5.7 Convergence of
Poisson distribution to
Gaussian form. The solids
curves are a smooth version
of the Poissonian, using the
Γ function, for various
values of μ. The dashed
curves are Gaussians with
the same μ, and variance set
to σ 2 = μ

5.7.3 Using the Gaussian as an Approximation

It may take an infinite number of trials for the binomial to become indistinguishable
from the Gaussian, but for practical purposes it is a good approximation already by
n = 20. This is very useful, because the factorials involved in the binomial formula
are very tedious to calculate for large values of n. If we believe a situation should
produce a binomial distribution, then we know the mean and variance expected; for
calculation purposes we can use the Gaussian with the same mean and variance. Of
course, the Gaussian is a PDF, rather than a discrete PD; so we have to be careful
to think about the range of r we are considering (see the exercises). Likewise, for a
Poisson situation with known μ, we know the variance will be σ 2 = μ and we can
approximate with the appropriate Gaussian. As well as detailed calculations, such
Gaussian approximations are often used in quick rule-of-thumb judgements. If we
see a “3 sigma event” then we know that is a rare thing.

Approximating distributions with a Gaussian becomes particularly important in
Chaps. 8 and 10 in Part III, when we are looking at parameter estimation and model
fitting. It enables us to greatly speed up numerical computations when we are trying
to get errors on estimated parameters.

5.8 Multi-variate Gaussians

Quite often in Physics we meet situations described by two or more variables each of
which has its own Gaussian distribution, resulting in a multivariate Gaussian. Two
important examples we will discuss later are the distribution of particle velocities
(which we will look at in the next section) and the distribution of posterior prob-
abilities in model fitting (which we will look at in Chap.10). When discussing the
univariateGaussian,we found it instructive to consider the integrated amount of prob-
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ability within a distance x from the mean, in units of the dispersion, z = (x − μ)/σ .
The equivalent for a multivariate Gaussian is to ask how much integrated probability
is within a radial distance r of the mean. We will now look at how to calculate this
quantity, starting with the bivariate or 2D Gaussian.

5.8.1 Bivariate or 2D Gaussian

To simplify, let us assume that both component Gaussians are zero-centred, with the
same value of σ . We also assume that the two variables are independent, so that
p(x, y) = f (x)g(y). In this case each of f (x) and g(y) are Gaussians, and so the
joint probability density at position x, y is

p(x, y) = 1

σ
√
2π

exp

[−x2

2σ 2

]
1

σ
√
2π

exp

[−y2

2σ 2

]
,

which gives

p(x, y) = 1

2πσ 2
exp

[−(x2 + y2)

2σ 2

]
.

The quantity p(x, y) is the joint probability density, defined such that p(x, y)dxdy
is the amount of probability in a small region within x to x + dx , and y to y + dy.
What we want next is to define the radial probability density p(r) defined such that
p(r)dr is the amount of probability within a range r to r + dr . To find this, we ask
how much probability there is in an annulus of width dr at radial distance r , where
r2 = x2 + y2. Multiplying the joint probability density by the area of the annulus
2πrdr , we can see that the radial probability density is given by

p(r) = r

σ 2
e−r2/2σ 2

. (5.4)

Notice that this is no longer a Gaussian shape, because of the factor of r outside the
exponential. Unlike the Gaussian, this function is analytically integrable, which can
be quite useful (see the exercises). The result is that the cumulative probability out
to r = R is

P(< R) = 1 − e−R2/2σ 2
.

We can invert this to find how many multiples of σ we need to go out to in order to
reach a given integrated probability P:

k = R

σ
= √−2 ln (1 − P).
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Recall that for the 1D Gaussian, a distance from the mean of k = 1 i.e. within ±1σ ,
contains 68.3% of the integrated probability; for the 2D Gaussian however, to get
68.3% of the integrated probability we need to reach k = 1.52. Likewise, to reach
integrated areas the same as we would get when reaching out to 2 or 3σ in the 1D
case, for the 2D case we need to integrate out to k = 2.49 or k = 3.44 respectively.

5.8.2 3D Gaussian

For the 3D problem, we likewise assume that the three variables x, y, z are indepen-
dent, and that the conditional distributions in each axis are Gaussian, each with the
same σ . Then to find the radial density distribution we need to sum over the shell of
thickness dr at r , so that we get

p(r) = r2

σ 3

√
2

π
e−r2/2σ 2

.

This function, like the 1D Gaussian, is not analytically integrable. However it has of
course been numerically integrated. To get the same integrated areas we would get
when reaching out to 1, 2, or 3σ in the 1D case, we need to reach out to k = 1.88,
k = 2.84, and k = 3.58 respectively. We will see in Chap.10, Sect. 10.5.6 that the
general problem of integrating an N-dimensional Gaussian is the same as integrating
a χ2 distribution with N degrees of freedom.

5.8.3 2D Gaussian: More General Case

Above, we assumed that the x and y distributions were independent, equal variance,
and zero centred. Note that the contours of equal probability density will be circles
centred on zero. The equations of such contours are then given by x2 + y2 = k2σ 2 for
various values of k, with k = r/σ as above. If the distributions are not zero centred,
we can of course just use new variables x ′ = x − μx and y′ = y − μy . Contours will
then be circles centred on μx , μy . Suppose next that the distributions have differing
dispersions, σx and σy . Then the probability density is

p(x, y) = 1

2πσxσy
exp

(
−1

2

[
x2

σ 2
x

+ y2

σ 2
y

])
.

The iso-density contours will then be ellipses, given by

x2

σ 2
x

+ y2

σ 2
y

= k2.
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The major axis of the ellipse will be parallel to either the x or y axis, depending on
whether σx or σy is larger. Once again, we can reduce this situation to the simple
case by transforming one of the variables, e.g. such that x ′ = x σy

σx
.

Finally however, suppose that the variables are not independent. Then it can be
shown that the PDF is

p(x, y) = 1

2πσxσy

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

[
x2

σ 2
x

+ y2

σ 2
y

− 2ρ
x

σx

y

σy

])
,

where x and y are the mean-centred variables, and

ρ = σxy/σxσy,

where σxy is the covariance of the PDF, as defined in equation (2.5). The quantity ρ

is a normalised version of σxy known as the correlation coefficient, which we will
discuss further in Chap.9. The iso-density contours are given by

x2

σ 2
x

+ y2

σ 2
y

− 2
ρxy

σxσy
= k2.

This is the equation of a rotated ellipse. With some longwinded algebra you can find
that the rotation angle is given by

θ = 1

2
cot−1

(
A − C

2B

)
where A = 1/σ 2

x ,C = 1/σ 2
y , B = 2ρ/σxσy .

Once again, you can recover the simple case by a suitable transformation of co-
ordinates: (

x ′
y′

)
=

(
cos θ sin θ

− sin θ cos θ

) (
x
y

)
.

This problem is closely related to howwe estimate the errors on correlated parameters
in model fitting. We will take another look in Chap.10.

5.9 Gaussians in Disguise

Sometimes in Nature one sees frequency distributions that don’t look at all Gaussian,
but which turn out to have an underlying Gaussian cause; it is just that our measured
data is in terms of a variable which is a transformation of the underlying variable
which does have a Gaussian distribution. We will look briefly at two examples.
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5.9.1 The Maxwell–Boltzmann Speed Distribution

In a gas in thermal equilibrium, the speeds of particles follow a distribution which
rises initially as v2 and then declines exponentially. However, in three dimen-
sions, each component of velocity vx , vy, vz has a Gaussian distribution. Collisions
between molecules continually re-distribute momentum. Consider the x-component
of momentum. Each collision adds or subtracts momentum with equal probability.
The final momentum is then the sum of many random variables, and has a probabil-
ity given by a Gaussian distribution. (In fact, the molecule will perform a random
walk in momentum space, as described in Chap.6, Sect. 6.2.4). This logic applies
separately to each velocity co-ordinate, so that the result is a trivariate Gaussian.
The distribution of speeds is then given by the 3D radial formula above, but with
r = v = (v2x + v2y + v2z )

1/2.
Note that each component Gaussian is zero centred—each particle is just as likely

to be moving in the positive x-direction as the negative x-direction. The variance
must be related to the temperature of the gas—the hotter the gas the larger the velocity
dispersion. However, more massive particles will be slower moving, so variance may
depend inversely on particle mass m. We could guess that σ 2 = kT/m where k is a
constant of Nature that relates these quantities. If we make this substitution we find

p(v) = 4π
( m

2πkT

)3/2
v2e−mv2/2kT ,

which is precisely theMaxwell–Boltzmann velocity distribution law, and the constant
k is the well known Boltzmann constant.

How does this result compare to the Boltzmann energy distribution we derived
in equation (3.6)? It is essentially the same thing. Given that particle energy is
E = 1

2mv2, we can re-express the Maxwell–Boltzmann formula in terms of E , also
multiplying by dE/dV so that the result is probability density per unit energy rather
than per unit speed, and find that

f (E) ∝ E3/2e−βE .

The exponential term is the usual Boltzmann factor. The E3/2 term is an example
of degeneracy. The energy states are not of equal probability before we consider the
effect of the total-energy constraint—there are more ways to have higher energy. In
this classical model, we do not have discrete energy states to count, but there is more
phase-space volume per unit energy at higher energy.

5.9.2 Stellar Masses: An Example of a Log-Gaussian

The left-hand side of Fig. 5.8 shows the distribution of the masses of the stars found
in two different young star clusters. They agree well—it seems there is a universal
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Fig. 5.8 Upper: The
distribution of stellar masses
in two young star clusters, α
Per (black symbols) and
Praesepe (grey symbols),
from Lodieu et al. (2012)
and other references therein.
The final few low points at
small masses are very likely
to be due to incompleteness
of the sample (measuring
stellar masses is very tricky),
so overall there is an
inexorable rise in numbers
towards small masses.
Lower: The same data, but
grouped in bins of log mass,
and expressed per unit log
mass. The curve shows a
function which is Gaussian
in log mass

stellar mass function. The distribution does not look Gaussian—it increases steeply
towards small masses, with a long tail towards high masses. Note that this graph
shows us the relative number of stars per unit mass. Suppose instead we calculate the
log of the mass of each star, and we make a histogram of the numbers per unit log
mass. We do this by grouping the stars in bins of log mass, and in each bin dividing
by the width of the bin in log mass, to give the density per unit log mass.

The result is shown on the right-hand side of Fig. 5.8. It looks Gaussian. The figure
shows an example curve plotted through the points (its not a formal fit).

Log-Gaussians occur quite frequently in Nature—why does this happen? Recall
that we argued that the Gaussian results from the combination of many variables.
Suppose rather than considering x + y, suppose we consider their multiplication
xy. In the additive case, to get any net outcome we need this-or-this-or-this. In
the multiplicative case we need this-and-this-and-this. But if we consider log xy =
log x + log ywe return to the additive case—sowe should get aGaussian distribution
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in the log. Why this happens in the forming of stellar masses is not fully understood.
Star-formation is a very difficult and messy problem, usually studied by numerical
simulation. The best recent simulations make a good job of reproducing the stellar
mass function, but the existence of a log-Gaussian form hints that something much
simpler is going on.

How do we recognise a log-Gaussian in linear form? Suppose z = log10 x and
the density per unit z is p(z). Then the density per unit x is f (x) = p(z)dz/dx , and
dz/dx = 1/x ln 10. Of course if were using natural logs throughout we wouldn’t
need that ln 10 factor, but it is usual in physical science to work with data in base 10
logs. So if p(z) is Gaussian in z, but we plot a density histogram as a function of x ,
we will see

f (x) = 1

x

1

σ
√
2π

1

ln 10
exp

[
−1

2

(
log10 x − μ

σ

)2
]
,

i.e. to first approximation we get a 1/x distribution. Note that μ and σ are the
mean and dispersion of z = log x , not of x . The 1/x is what gives the histogram its
characteristic steep rise to low values. It also makes qualitative sense. If to get large
values of x you need this-and-this-and-this things to happen, large values get rapidly
more unlikely.

5.10 Error Distributions

A common problem for experimental physics is to understand the errors on our
measurements, and to propagate them in analysis of the measurements. For example,
the distributions in Fig. 5.1 are not perfectly smooth. How do we assess the errors
on a binned sample histogram like this? Common practice is to assume that the
individual binned values themselves can be seen as having a Gaussian distribution.
Suppose in some specific bin xi the true value is fi . If we imagine making the same
measurement repeatedly, we would get various values gi , centred on fi , but with
some spread described by an error variance σ 2

err. But how do we know what the
value of σerr is? There are three important cases.

5.10.1 Poisson Errors

Quite often themeasurementwemake involves a count of some kind—e.g. howmany
two-photon events did the ATLAS experiment see in that energy range? The number
of counts N that we observe can be seen as an estimate of the true value f , but N
will follow a Poisson distribution with σerr = f 1/2. We can take N as an estimate of
f and use σerr = N 1/2. For large N the distribution will be closely Gaussian and our
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estimate of the error will also be good. For small N we have to be muchmore careful,
both because the Gaussian approximation may be poor for small N , and because N
will be a poor estimate of f . Note also that the value we have in our histogram may
not be the count N itself, but some quantity derived from N . In that case, we can use
the error propagation formulae from Chap.2 to calculate the appropriate σ .

Our phone-number example illustrates the point. Looking at Fig. 5.1 you can see
that the histogram bar heights jump about somewhat—the distribution is not smooth.
Consider the maximum bin, with 51 counts. The “rule of thumb” error on that value
is 511/2 = 7.1, so we should see a bin to bin scatter of around that size, and this is
indeed pretty much what we see.

5.10.2 Theoretically Understood Errors

Sometimes from the physics of the experiment we know exactly what the sources
of noise are, and can calculate what the errors ought to be. Poisson errors are an
example of this, but there are others. For example, when we measure a voltage, it
will be subject to thermal fluctuations or Johnson noise for which there is a well
known formula depending on the temperature of the system.

5.10.3 Empirically Derived Errors

Sometimes, we simply don’t know enough about the system in question to reliably
calculate what the errors ought to be, and so need to estimate them from the data
itself. We could do this by repeating the experiment several times, and estimating
σerr from the scatter within the repeat values. Alternatively, we could take several
neighbouring bins, and on the assumption that the true value is not changing too fast,
estimate σerr from the bin-to-bin scatter. Later we will look more closely at how we
can best estimate mean and variance from experimental data.

5.10.4 Propagation of Gaussian Errors

In Chap.2 we looked at how errors propagate, deriving the general formula

σ 2
z = σ 2

x

(
∂z

∂x

)2

+ σ 2
y

(
∂z

∂y

)2

,

and then using this to find handy formulae for various cases. The general formula is
a correct statement about how variances combine. If the PDFs for both x and y are
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Gaussian, then if z = x + y or something similar, such as an average of the two, then
the convolved PDF will as we have seen also be Gaussian. This makes the combined
σz easy to interpret—we know where 90% probability will be, or 95% and so on.
But beware! If x and y are not normally distributed, or if we combine them in a more
algebraically complicated way, then in general the PDF of z will not be Gaussian.
This can lead to serious mistakes when interpreting discrepant data points.

5.11 Key Concepts

Some of the key concepts from this chapter are:

• The ubiquitous Nature of the Gaussian distribution
• The use of a standard form for the Gaussian, with μ = 0 and σ = 1
• The physical origin of the Gaussian from situations where many factors are com-
bined

• The idea of the convolution of two functions
• The result that if you add two random variables, the PDF of the new variable is
the convolution of the two original PDFs

• The result that the convolution of two Gaussians makes another Gaussian, so that
the Gaussian is a convergent form for the convolution process

• The fact that most other distributions tend towards the Gaussian form, for large N
• The result that the radial PDF resulting from a bivariate Gaussian is not Gaussian
• The fact that the Maxwell–Boltzmann speed distribution is really just a trivariate
Gaussian in disguise

• The idea that error distributions are usually Gaussian, but not always!

The key formulae from this chapter are: the formula for the Gaussian distribution
((5.1) left) and its standard form ((5.1) right); the formula for calculating the convo-
lution of two functions (5.2) and the result of convolving two Gaussians (5.3); and
the radial PDF resulting from a bivariate Gaussian (5.4).

5.12 Further Reading

The normal distribution was first clearly defined by Gauss in 1809, but an equiv-
alent mathematical form was derived by De Moivre in 1738, as an approximation
to binomial coefficients. However, it was Laplace, in a series of works, who had
the key insight that the distribution arose from aggregating observations, and who
explicitly showed that the binomial tended towards the normal form. This can be
seen as the first version of the Central Limit Theorem, and indeed is known as the
De Moivre–Laplace Theorem. The more complete modern version of the Central
Limit Theorem, that adding random variables with a wide variety of PDFs produces
a convergence on the normal form, was proved by Lyapunov in 1901. The historical
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development, as well as much technical detail, is in the excellent wikipedia pages on
the Normal Distribution, and on the Central Limit Theorem. These pages also show
a nice simulation of how the distribution of coin tosses evolves towards the normal.

Most advanced statistics textbooks will have some kind of derivation of the Cen-
tral Limit Theorem—for example Miller and Miller (2013). The typical approach
involves re-expressing a PDF as a set of “characteristic functions” which is essen-
tially a Fourier Transform of the PDF. A good introduction to Fourier Series analysis
is Folland (1992)

As discussed in this chapter, the stellar mass function seems to be a good example
of a normal distribution in disguise, but it took some time to recognise. Themass func-
tion was usually thought to be first a power-law, then a segmented power-law, before
being recognised finally as a log-Gaussian (Miler and Scalo 1979; Chabrier 2003).
However, well before these key observational papers, Larson (1973) had already
recognised that a simple probabilistic approach to fragmentation of the molecular
clouds in which stars form, would lead naturally to a log-Gaussian form. However,
these matters are still controversial. A good review is in Bastian et al. (2010).

5.13 Exercises

5.1 Distribution A is a Gaussian PDF pA(x) with μ = 0 and σ = 1. Distribution B
is a Gaussian pB(x) with μ = 3 and σ = 1. For what values of x does pB exceed
pA?

5.2 Show that for a Gaussian, FWHM=2.355σ . What is the Full Width at 20% of
maximum?

5.3 Show that one standard deviation from the mean is where the Gaussian has the
steepest slope. If you draw a tangent to the curve at this point, where does it intercept
the x-axis?

5.4 What is the probability of getting 6 heads and 10 tails in 16 tosses of a coin? First
calculate the exact answer, then try using the Gaussian approximation and compare
the answer. (TheGaussian is of course a distribution for a continuous randomvariable.
Consider a range of x that approximates the relevant value.)

5.5 What is the probability that at least 70 out of 100 mosquitos will be killed by a
new insect spray, if the probability that any one mosquito will be killed by the spray
is 0.75? Find an approximate answer, rather than trying to find the exact answer.

5.6 Derive the result quoted in equation (5.4), that for a bivariate Gaussian, the
integrated probability to radial distance r is

P(< R) = 1 − eR
2/2σ 2
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where σ is the variance of the conditional distribution for each of x and y. Compare
the multiples of σ you have to go to in the 1D and 2D cases to reach integrated
probabilities of 68, 90, and 95%.

5.7 A chemist sells on average 150 tubes a week of a particular brand of toothpaste.
If she wants to make sure that there is at most a 5% chance of running out in a given
week, how many should she keep in stock?

5.8 An astronomer is estimating the number density of a certain type of star by
counting stars of that type within a limited volume. It is desired that the number
counted should be within 10% of the “correct” number. How many stars should be
in the sample if there is to be a 95% chance of achieving this accuracy?

5.9 Show that the mean absolute deviation (MAD) for a Gaussian distribution is√
2
π
σ .

5.10 For a gas in thermal equilibrium, in terms of the temperature T and Boltzmann
constant k: (a) what is the most probable speed v, (b) what kinetic energy E does
this correspond to? and (c) What is the probable value of E? Are the answers to (b)
and (c) the same?
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Chapter 6
Distributions Arising from Random
Processes in Time

6.1 Outline of Content

• Random walks in 1D and 3D
• The Poisson Process
• The waiting time or exponential distribution
• The Cauchy/Lorentz distribution
• Power law tails

A stochastic process is something that evolves in time, with a random element.
Examples might be the diffusion of one gas through another, the change of stock
market prices with time, or the flickering light curve of a quasar. The sequence of
values x(t) that arises is known as a time series. We will study the characteristics
of the time series themselves in Chap.12. In this chapter we look at the resulting
distribution of values f (x). If the process produces a distribution of data values that
is the same whenever you look at it, we say that the process is statistically stationary.
However, this is not always the case. In the problem of diffusion, the distribution
of particles depends on the length of time since the initial release of particles. The
diffusion of particles is a good example of a random walk. Let’s look at that concept
first.

6.2 RandomWalks

Imagine some evil-smelling gas released at some point in space. How long before
the smell reaches your nose? The molecules of the evil-smelling gas start to travel
through the air but suffer repeated collisions, changing direction. They undertake a
random walk. Each molecule will take a different path, ending up, after many steps,
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at some x, y, z position. How many particles end up near a given spot in space?
In other words, what is the joint probability distribution for x, y, z? Lets start by
considering a simplified case, where the steps are in one dimension rather than three,
and are of fixed size.

6.2.1 1D Random Walk

Suppose that the molecule goes through n steps, each one of length a, but that these
steps can be either forward or backward. At each step the molecule moves either
+a or −a, with equal probability. A simple computer simulation of a hundred runs
of this process is shown in Fig. 6.1, illustrating how the track produced gradually
wanders away from the starting point. Every track is different, but it is clear that
on average they slowly diverge. This is captured by the right-hand side of Fig. 6.1,
which shows the distribution of data values f (x) resulting from a large number of
runs, at three different time steps. Moving forward in time by a factor of four seems
to produce a distribution that is wider by roughly a factor of two. We can show that
in fact this is exactly what we expect.

We can think of getting a positive step as a “success” and so after n steps the
number of positive steps r will be given by the binomial distribution with p = 1/2.
However r positive steps means n − r negative steps, and so the net displacement is
d = ra − (n − r)a = (2r − n)a.

The mean of r is μr = np = n/2, so the mean displacement is μd = 0. The vari-
ance in r is σ 2

r = np(1 − p) = n/4, so by the usual variance propagation formula,
σ 2

d = (2a)2σ 2
r = na2. In general, the distribution of the number of positive steps will

be given by the binomial distribution for r . The distribution of displacements will be
given1 by transforming to d = (2r − n)a. For large n the distribution of displace-
ments will approximate to the Gaussian, and the probability density for a distance
travelled near x will be given by

p1D(x) = 1

σ
√
2π

e−x2/2σ 2
with σ 2 = na2. (6.1)

This distribution has mean μ = 0 at all times, but the dispersion depends on the
number of time steps—σ = a

√
n. It is a normal distribution, but it is spreading with

time, as the number of steps increases.

1This simple fixed step-size simulation actually gives a distributionwhich oscillates on a fine scale—
an even/odd number of steps can only result is an even/odd net displacement. However, for small
step sizes this effect smooths out.
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Fig. 6.1 Upper: Simulation
of random walk in 1D. At
each time step the step size is
a = 0.1, and the simulation
is continued for n = 1000
time steps. The figure shows
the tracks of 100 such
simulation runs. The vertical
lines show the positions of
the vertical slices used for the
neighbouring figure. Lower:
At each of the indicated
times, the resulting x value is
collected for each simulation
run. The curves show the
resulting (normalised)
distributions f (x)

6.2.2 3D Random Walk

In three dimensions, each collision scatters the molecule into a random direction.
The result will be a trivariate Gaussian, i.e. a Gaussian independently in each of
x, y, z. In Chap.5, Sect. 5.8.2, we saw howwe can find the radial density distribution
by considering the probability in a radial shell. We thus find that

p3D(R) = 4π R2

(
2πσ 2

)3/2 e−R2/2σ 2
with σ 2 = na2. (6.2)

Note that this equation gives the probability density per unit radius. (We have used
capital R here to avoid confusion with the number of forward steps r from the
previous section.)
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6.2.3 Spreading Rate

As the particles spread out, how far do they get as a function of time? There is no
unique answer to this question. The particle distribution is always centred on the
origin, but develops into a gradually wider distribution. However, we could interpret
the question as “what is the typical radial distance reached by a particle?”. This is
a better posed question, as the radial density distribution p(R) at first rises as R2,
coming to a peak, and then declines exponentially. However, we could choose a
location measure in several different ways, which give somewhat different answers,
for example:

peak of PDF Rpk = a
√
2n

mean value of R R̄ = ∫
Rp(R) = a

√
8n/π

root-mean-square R Rrms = (R̄2)1/2 = a
√
3n

Let us take the peak-location version, and interpret this formula in a gas physics
context. If we take the step length a as the mean-free-path between collisions λ, and
the molecules are travelling at typical speed v, then the time between collisions is
τ = λ/v. Then in time t the number of steps is n = tv/λ. Finally then the typical
distance the smell will travel in time t is

l = √
2vλt, (6.3)

i.e. the distance goes as the square root of time. Of course in a real gas, the steps are
not of a fixed length; they have their own distribution. However the basic results stay
the same.

6.2.4 Random Walks in Momentum Space

Collisions between molecules also exchange momentum and energy, and so are
undergoing a kind of random walk in momentum space. Does this mean they get
hotter and hotter? Imagine a single slow molecule dropped into a hot gas. At first it
does undergo a random walk in momentum, but gradually it gains less and less on
each collision on average as it speeds up, until it is similar to the other molecules,
in which case it is just as likely to donate them energy. This kind of random walk
with decreasing step length can of course be mathematically modelled, but we won’t
pursue that here.
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6.3 The Poisson Process and Its Derivatives

Quite often in Nature we see discrete events that seem to occur at a constant rate
on average, but at random intervals. One example would be disintegrations of atoms
in a radioactive source. Another example would be the noise we sometimes see in
electronic componentswhen single electrons strike the component.Yet anothermight
be the arrival of customers at a queue. Such a process is known as a Poisson Process,
and can be seen as a sequence of points on a timeline, as illustrated in Fig. 6.2. In
a similar manner, we could consider a distribution of points in space, such as the
position of trees in a forest, or stars in a galaxy. How do we model such a process?
To simplify, we will consider only the 1D Poisson process, and think of the points
as distributed in time. To clarify our thinking, it will be useful to refer to Fig. 6.2,
which defines three different time intervals that we will use.

6.3.1 Distribution of Events Versus Time

We assume that the events occur at a rate λ per unit time. Over an interval of time
T the expected number of events will on average be μ = λT . If T is not very large,
then the actual observed number n will fluctuate noticeably from bin-to-bin. You can
probably guess that the fluctuations follow the Poisson statistics that we discussed
in Chap.4, but we will come to that in a moment. However for large enough T , the
number of counts can be considered constant, n ∼ μ—auniform distribution in time.

Now consider a very small time bin,Δt . The expected number of events μ << 1.
Note that we can’t have fractional events—each such bin Δt either contains an event
or it doesn’t. However, we can see that

p = λΔt

is the probability that a given bin contains an event. The probability of two events
in the same time interval is p2. As long as Δt , and hence p, is small enough, this

Fig. 6.2 Illustration of a one-dimensional Poisson process in time. Each event is given by a separate
symbol, and occurs at random but at a constant average rate. The various time intervals shown are
explained in the text
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probability is negligible compared to the probability of a single event. Numerically
then, we could construct the sequence of arrival times by taking one Δt bin at a time
and using a random number generator to decide whether that bin has an event or not.

6.3.2 Bin-to-Bin Fluctuations

Returning to the larger time bins of size T , suppose we pick T such that the expected
number per bin is say μ = 3. How often do we get n = 2, or n = 5, and so on? The
answer is of course that f (n) is given by the Poisson distribution, but lets step through
the logic. We can divide up T into smaller bins Δt . In each small time-step we have
a success/failure trial with probability p = λΔt . Overall we have N = T/Δt trials.
The expected number of successes n is then given by the binomial distribution. As
we let Δt → 0 and so N → ∞, this tends towards the Poisson distribution. The
count fluctuations are therefore given by

f (n) = μne−μ

n! with μ = λΔt.

6.3.3 Waiting Time Distribution

A striking feature of Fig. 6.2 is that although the events arrive at random, they appear
to be clumped—sometimes there is a long gap, and sometimes several in a row.What
is the distribution of waiting times from one event to the next? This calculation is
relevant to many familiar circumstances—for example, if I just missed a bus, how
long am I likely to wait for the next one?2 To treat this problem, it is easier to think
in terms of a lack of events in a given time interval.

The probability of there being no event in time Δt is 1 − λΔt . Suppose now that
after an accumulated time t there has been no event. We denote the probability of this
by P0(t). What is the probability that there is still no event by t + Δt? We need to
have no event by time t (probability P0(t)) and no event inΔt (probability 1 − λΔt).
Multiplying these together we get

P0(t + Δt) = P0(t) (1 − λΔt).

Re-arranging this we get

P0(t + Δt) − P0(t)

Δt
= −λP0(t) that is

dP0

dt
= −λP0,

which has the solution

2Of course, its not obvious that buses do actually arrive at random...
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P0(t) = e−λt ,

where P0(t) is the probability of no event by time t .Wewould also like the probability
density that the next event will occur at time t . This must be

Distbn of waiting times f (t) = λe−λt . (6.4)

You can see this because the integral
∫ T
0 f (t) is 1 − e−λT , which is the probability

that the next event occurs somewhere in the range 0 to T , as opposed to P0(T ) =
e−λT which is the probability that the next event occurs beyond T . The distribution
f (t) is known as the waiting time distribution or sometimes just as the exponential
distribution.

6.4 The Cauchy Distribution

Figure6.3 shows the profile of a resonance feature measured in a nuclear physics
experiment. The core of the feature looks roughly Gaussian. However on the high
energy side we a long tail inconsistent with a Gaussian distribution. The right hand
side of the figure shows a log-log version of the same dataset. The extended tail is
roughly a straight line in this log-log plot, with a slope of 2, showing that the profile
is following a power law form with y ∼ x−2. Distributions showing 1/x2 tails occur
in various circumstances in Nature. The simplest mathematical form that gives the
right shape is the Cauchy distribution

f (x) = 1

π(1 + x2)
. (6.5)

Below we shall look at two examples of how such a shape can arise naturally
through random processes. But first, lets look at the properties of this distribution,
which are somewhat strange.

6.4.1 Moments of the Cauchy Distribution

The zeroth moment of the Cauchy distribution is 1.0, so that f (x) can represent a
properly normalised probability density function. To see this, note that the derivative
of arctan x is 1/(1 + x2). The half-integral of f (x) from x = 0 to x = X is therefore

I (X) = 1

π

[
arctan x

]X

0 = 1

π
arctan X.
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Fig. 6.3 Upper:
Cross-section of Δ++
production from π+ − p
scattering. Data kindly
provided by Mikhail
Bashkanov. For comparison,
the dashed line shows a
Gaussian profile and the
solid line shows a Lorentzian
profile. For a little more
explanation, see the Further
reading section. Lower:
Log-Log version of the plot,
recentred on the mean. The
extended wing tends towards
an x−2 shape at high energies

Then of course tan π/2 = ∞ and so we get

I (∞) = 1

π

π

2
= 1

2
.

However, what we just calculated was the half integral from zero upwards, so the
full integral is 1.0, as required.

Themean, defined as the expectation value E[x] is formally an undefined quantity.
Wewon’t prove that here, but it is not too disturbing, as f (x) has a well definedmode
or median, which is clearly at x = 0, as the function is symmetrical in x . What about
the variance? Given that the distribution is centred at x = 0 we simply want the
expectation value of x2, and find
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E[x2] = 1
π

∫
x2

1+x2 dx = 1
π

∫ (
1 − 1

1+x2

)
dx

= 1
π

(∫
1.dx − ∫

1
1+x2

)
dx

= 1
π

(∞ − π
)

= ∞.

Disturbingly, the Cauchy distribution has infinite variance. It can be shown that all
higher moments are also infinite.

6.4.2 Lorentzian Form

Physicists normally use a slightly different formulation of the Cauchy distribution,
known as theLorentzian distribution, or sometimes theBreit–Wigner profile. The first
step is to recentre at a value x = μ rather than x = 0. Next, although the dispersion
σ is undefined, we can still objectively characterise the width of a given distribution.
The usual way to do this is to quote the Full Width at Half Maximum (FWHM),
usually denoted by the symbol Γ . Adjusting the normalisation to make sure the
integrated probability is 1.0, we find that the required Lorentzian form is:

f (x) = 1

π

Γ/2

(x − μ)2 + (Γ /2)2
. (6.6)

This is a symmetrical distribution with mode = μ, and a maximum value of 2/πΓ .
At (x − μ) = Γ/2 we get f (x) = 1/πΓ , i.e. half the maximum value, as required.
You can see that the standard Cauchy form is a Lorentzian with μ = 0, Γ = 1.

6.4.3 Angular-to-Linear Transformations: The Rotating Gun
Problem

ACauchy–Lorentz distribution can arise when a phenomenon involves a transforma-
tion from an angular co-ordinate to a linear co-ordinate. If the expected distribution
is uniform in the angular co-ordinate, it will be Cauchy-like in the linear co-ordinate.
As an example, consider a gun firing bullets at random, but at a uniform rate, i.e.
as a Poisson process in time. The distribution of bullets as a function of time will
be uniform on average. Now imagine the gun to be rotating, with uniform angular
velocity. The distribution of bullets with angle will now be uniform. Finally, imagine
a wall some distance from the rotating gun. What is the probability of a bullet hitting
a particular position on the wall?
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Fig. 6.4 Illustrating the
geometry of the rotating gun
problem

Figure6.4 shows the geometry of this situation. If we care only about the forward
travelling bullets, which are capable of hitting the wall, the probability density as a
function of angle θ is p(θ) = 1/π . To transform to the density per unit x we note
that p(x)dx = p(θ)dθ and so get

p(x) = 1

π

1

dx/dθ
.

From the figure we have

x = d tan θ so
dx

dθ
= d sec2 θ and sec θ = (d2 + x2)1/2

d
.

and so we get

p(x) = 1

π

d

d2 + x2
,

which you can see is a Lorentzian with Γ = 2d.

6.4.4 Resonance and the Lorentzian

Another way to achieve a Cauchy–Lorentz distribution is through the phenomenon of
resonance. This crops up in a variety of places—the shape of absorption lines in stars,
the dependence of nuclear cross-sections on energy, or theRayleigh scattering of light
bymolecules in the atmosphere. In each case the problem takes a probabilistic form—
for example, what is the probability a given photon will be scattered? However, the
essence of any such process is analogous to the problemof a damped driven oscillator.

If we have a spring with spring constant k this produces a returning force F =
−kx , and if a mass m is attached this has a natural frequency of oscillation with
angular frequency ω0 = (k/m)1/2. Now suppose we try to force an oscillation at
frequencyω f with driving force F = F0 cosω f t , and in addition we have a damping
term proportional to velocity, F = −λv. Then, as you will find in standard texts on
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vibrations and waves, you can show that the energy of the resulting oscillation you
get at a chosen driving frequency ω f is

E(ω f ) = F2
0 /2

(ω f − ω0)2 + m2λ2
.

When the driving frequency is near the natural frequency, you get a large output—
i.e.ω0 is the resonant frequency. However, far from the resonant frequency, the output
goes as E ∝ 1/ω2

f . You can see that, apart from a normalising factor, the expression
above is identical to the standard Lorentzian form.

6.4.5 Comparison to Gaussian

Figure6.5 compares the Lorentzian and Gaussian distributions. In order to compare
them, because the Lorentzian has no defined value of σ , they have been calculated to
have the same value of FWHM,Γ . For the Gaussian,Γ = 2.355σ (see Exercise5.2).
The vertical normalisation has been done in two different ways. In the first method
the two curves are both properly normalised probability density functions, i.e. they
integrate to 1.0. This emphasises that the Lorentzian has a substantially lower peak
probability density, and very extended tails. The second version re-normalises the
Lorentzian so the peak probability density is the same as for the Gaussian. What this
reveals is that within the core region, the Gaussian and the Lorentzian are closely
similar. This is of very practical concern. The usual practice when analysing data is to
assume that observed peaks are of Gaussian shape. A common problem (especially in
statistical inference) is to estimate the probability of unusual events, e.g. a data point
seen at >2.5σ . Examining the core region, a value of σ may have been estimated on
the assumption that the peak is of Gaussian shape; if in truth it is Lorentzian, then
the probability of events in the tail can be enormously larger (see exercises).

Fig. 6.5 Comparison of
Gaussian and Lorentzian
functions. See text for details
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Another key point is that because of the pathological Nature of the Cauchy–
Lorentz distribution, with no defined variance, it does not converge to a Gaussian on
repeated convolution. Convolution of a Lorentzian with another Lorentzian gives a
third Lorentzian; it is a separate convergent point of the convolution process. This is
another reason why it is a common and important distribution.

6.5 Power Law Tails

The left-hand side of Fig. 6.6 shows a histogram of the number of US cities with a
given population. It is strongly peaked towards low values—there are many small
cities, and fewer and fewer large ones. There is no obvious “typical” city size. This is
rather reminiscent of the situation for the distribution of stellar masses (see Chap.5,
Sect. 5.9.2). In the stellar mass case we found that if we looked at the distribution of
values of log mass rather than mass, there is after all a typical value (of log mass),
and the distribution looks Gaussian. That is not the case here—the distribution of the
log of city size does not look Gaussian. Instead, what is revealing is to stick with the
number per unit city size versus city size, but to plot the log of each of these values.
This is done for the city size data in the right hand side of Fig. 6.6, and shows a
straight line in this log-log plot. In others, the frequency of city size seems to follow
a power law, i.e.

f (x) = Ax−α so that log f = log A − α log x . (6.7)

In the city-size case, it seems that α ∼ 1.5. Note that at this point, our frequency
is not a normalised probability density. In fact, this is problematic, as we shall see
shortly.

Power law distributions, often extending over many decades of the relevant vari-
able x , are quite common in Nature. We see them in the distribution of cosmic ray
energies, the spectra of solar flares, the distribution of incomes, the relative popu-
larity of web sites, and many other places. In some areas of science, especially in
economics, the power-law distribution is known as a Pareto distribution. A variety
of values for the power law index α is seen, ranging from α = 0.5 to α = 3 or even
steeper. Before we look at how such power law distributions might be generated in
Nature,we should lookmore carefully how they can bemathematically characterised.
In fact, as we shall see below, a power law cannot truly be the correct description of a
probability distribution for all values of x ; it can only be an approximate description
of a power law tail.
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Fig. 6.6 Upper: Frequency
distribution of US city sizes
as of the year 2000, taken
from Clauset et al. (2009).
Lower: Same data points,
but plotting the log of the
frequency versus the log of
the city size

6.5.1 Normalising a Power Law Distribution: Power Law Tail
Approximations

Supposewewant to normalise the frequency distribution of equation (6.7), to produce
a probability density function. Integrating equation (6.7) gives

∫ +∞

−∞
f (x) = A

1 − α

[
x (1−α)

]+∞
−∞ .

If the power law is steep, α > 1, the integration diverges towards small values of
x . A steep power law therefore cannot be a strictly true mathematical description at
low values. Indeed, in real world examples, we always see a flattening of the slope
towards low values. You can see this in the right hand of Fig. 6.6, but it is even more
obvious in Fig. 6.7, the distribution of earthquake magnitudes. In fact, the lower end



106 6 Distributions Arising from Random Processes in Time

Fig. 6.7 Frequency
distribution of earthquake
magnitudes, taken from
Clauset et al. (2009). Note
that the “magnitude” of an
earthquake is already
effectively a logarithmic
quantity, but that the
frequency is terms of the
implied linear size. The
strange looking curve on the
left is simply a normal
Gaussian, but plotted in
log-log space

is roughly consistent with a Gaussian distribution. The power-law phenomenon is
usually about extended tails to more normal distributions.

Suppose we recognise this and consider only values at x > xmin. Unfortunately,
towards large values of x , the integral still blows up ifα < 1. Therefore, just as a steep
power law cannot be a true description at low values of x , a flat power law cannot
be a true description at high values. Real world distributions do indeed quite often
show two different slopes at high and low values, or a slow curvature in logarithmic
space.

6.5.2 Moments of a Power Law Distribution

If we restrict our power law distribution to x > xmin, and also require α > 1, then
requiring the zeroth moment to be 1.0, gives us the normalisation factor A, in terms
of xmin, and a useful way to express a power law distribution:

A = (α − 1)x−(1−α)
min and so p(x) = α − 1

xmin

(
x

xmin

)−α

for x > xmin.

Is there a “typical” value? What is the first moment? We find

E[x] =
∫ ∞

xmin

xp(x) = A

2 − α

[
x2−α

]∞
xmin

.

If α > 2 this produces a sensible result.

E[x] = xmin
α − 1

α − 2
.
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If α < 2 the mean value is technically infinite. However, it is worth remembering
that this is the first moment of a mathematical expression; the sample mean of any
sample of data which is approximately described by a power law with α > 2 will
still produce a sensible finite value. However, for such a power law, you will find
that the sample mean fluctuates rather wildly from sample to sample. In a similar
way, as we look at higher moments, we find that the m’th moment is only defined
for α > m + 1, but if that holds we have

E[xm] = xm
min

α − 1

α − 1 − m
.

6.5.3 Lorentzians and log Gaussians in Disguise

If a dataset shows a power law tail with α = 2.0, then it may well simply be a
Lorentzian distribution; at large x this follows p(x) ∝ 1/x2. If a dataset looks power-
law like, but you only have data values over a limited range of x , say one or two
decades, then the true distribution could be log-Gaussian. The log-Gaussian has a
very “stretched out” distribution, and over amodest range of x will produce a straight-
ish line in a log-log plot; however, the slope in log-log space slowly changes, getting
steeper at larger values of x . As described in the “Further reading” section of Chap. 5,
early measures of the stellar mass function were fitted with power law functions; a
wider range of measurements led to the popularity of two power law forms; but now
it is conventional to model the stellar mass function with a log-Gaussian form. Note
that the larger the value of σ (i.e. the dispersion in log x) the larger the range over
which x will look like a single power law.

6.5.4 Power Laws from Inverse Quantitities

In this and the next two sections I follow the excellent discussion of Newman (2005)
in examining ways that approximately power law distributions can arise in Nature.
The first and simplest is by looking at the distribution of inverses of a quantity.
Suppose some quantity y has a known PDF f (y), but that the quantity we have
actually measured and found the distribution of, is its inverse, x = 1/y. Then the
PDF of x will be

p(x) = f (y)
dy

dx
= − f (y)

x2
.

Suppose f (y) is zero centred, and we are looking at large values of x that correspond
to small values of y, where f (y) ∼ const for any reasonable distribution, be it Gaus-
sian or whatever. Then to a good approximation, p(x) ∝ x−α with α = 2. Positive
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values of y correspond to negative values of x and vice versa. More generally if
x = 1/yβ we can get a power law with α = 1 + 1/β.

This method may seem artificial, but in fact it crops up quite often, especially
when we look at fractional changes in a quantity. Suppose we measure a quantity y
repeatedly and look at the relative change x = Δy/y. The absolute values Δy may
have a Gaussian distribution, but the distribution of x will show a power law tail with
α = 2.

6.5.5 Power Laws from Growth and Survival Processes

Another simple mathematical trick to generate a power law is to take the ratio of two
exponentials. Suppose the quantity has a PDF f (y) = eay , but the quantity x that we
measure is related to y as x = eby . Then the PDF of x will be given by

p(x) = f (y)
dy

dx
= p(y)

dx/dy
= eay

beby
=

(
eby

)
a/b

beby
= xa/b

xb
.

but the last expression is of the form

p(x) ∝ x−α with α = 1 − a/b.

Combining exponentials can occur in a variety of circumstances, but probably
the most important class of phenomena involves the competition between exponen-
tial growth and an exponential decline in survival rate. As a specific example let us
examine the acceleration of extremely energetic particles in the cosmos. This can
happen in a variety of places—solar flares, supernova remnants, quasar jets—but the
process is always roughly similar. The particles enter a region where they are col-
liding with much more massive entities—for example the upstream and downstream
shock fronts in an expanding blast wave. (The word colliding here is a bit of an over-
simplification of course.) In a normal gas, when particles collide with each other,
they share energy, both gaining and losing energy, rapidly establishing a Gaussian.
When however the dynamics of a particle is dominated by collisions with muchmore
massive objects, it gains energy in every collision, and the result is an exponential
growth of particle energy, on some growth timescale Tg . At the same time, there
is a small chance in each unit of time that the particle will escape the acceleration
region. This leads to a exponentially decreasing probability of survival with time, on
some escape timescale Te. Put the exponential growth of energy and the probability
of escape together we have

E = E0et/Tg and p(t) ∝ e−t/Te .
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We have deliberately left the normalisation of the PDF undefined, because of the
ambiguities discussed previously. This pair of expressions is just like our discussion
above, with y = t , b = 1/Tg , and a = −1/Te. We therefore predict the particle
energy distribution

p(E) ∝ E−α with α = 1 + Tg/Te. (6.8)

If the growth timescale is much shorter than the escape timescale, Tg << Te, we
expect an energy distribution following E−1; if the timescales are comparable, we
have ∼E−2; if escape dominates, i.e. Te << Tg , the power law tail will become
very steep and so unimportant. Other possible examples of competing growth and
death processes include population sizes, and the distribution of personal wealth. In
a capitalist economy, rich people get richer, but they are also subject each year to a
finite risk of a catastrophe occurring and becoming bankrupt.

6.5.6 Other Power Law Generation Methods

We will briefly mention a few other processes thought to lead to power law distribu-
tions.

(i) The Yule process was invented to explain the distribution of the number of
biological species per genus, but has been applied elsewhere. Over time, species
split and make new species, growing the population in that genus, but every so often
a new species is different enough that it starts a new genus.

(ii) Earlier in this chapter we discussed the randomwalk. Every so often by chance
the process will return to the starting point—sometimes quickly, sometimes after a
long time. It can be shown that the distribution of return times is a power law. (This
is sometimes known as the gambler’s ruin problem.)

(iii) When a substance undergoes a phase transition from one state to another, it
often does so in localised regions. As these increase in number density, they start to
connect up. At a certain critical density, the size distribution of connected regions is
a power law. Although we have talked in terms of phases in a substance, analogous
situations hold in a variety of circumstances. This arrangement requires fine tuning,
but it has been argued that many systems naturally end up at a critical point. This
idea is known as self organised criticality.

6.6 Key Concepts

Some of the key concepts from this chapter are:

• How a random walk produces a binomial distribution of displacements
• How a 3D random walk in practice produces a trivariate Gaussian



110 6 Distributions Arising from Random Processes in Time

• How in diffusion, distance travelled goes as the square root of time
• The idea of a Poisson process, and how it leads to an exponential distribution of
waiting times

• The Cauchy(Lorentz) distribution, and how it formally has an infinite variance
• How a Cauchy distribution can be produced by resonance process
• How power-law tails frequently occur in Nature
• How power-law tails can be produced by inverse processes, and by growth-and-
survival processes.

The key formulae from this chapter are: the distribution of displacements in a
random walk, in the 1D (6.1) and 3D (6.2) cases, and the formula for distance
travelled versus time (6.3); the formula for the distribution of waiting times in a
Poisson process (6.4); the formula for a Cauchy distribution (6.5), and its Lorentzian
form (6.6); the general formof a power-law tail (6.7); and the formula for a power-law
tail produced by competing growth and death processes (6.8).

6.7 Further Reading

Diffusion and the simplest kinds of random walk are discussed in many basic text-
books on thermal physics. Likewise resonance processes andLorentzian distributions
are covered in textbooks on nuclear physics and elsewhere. To get a deeper appreci-
ation of random walks, Poisson processes and shot noise, there are many books on
stochastic processes. Two books that are focused specifically on stochastic processes
in Physics are Lemons (2002) and Jacobs (2010). We will look at these issues more
closely in Chap.12.

Its harder to find good treatments of power law distributions in basic textbooks,
despite their ubiquity in Nature. A large number of intriguing examples are collected
in Newman (2005) and Clauset et al. (2009), and both those papers have a clear
approach to explaining the underlying processes. There is a very interesting and
useful web page associated with the Clauset paper (see web references). Power-law
distributions are better known in social sciences, where they are known as Pareto
distributions; the wikipedia page is a good overview. An interesting blog which
looks at Economics from a Physicist’s point of view is “Economics as Classical
Mechanics” by Ivan Klitov.

Power-law distributions are closely related to fractals. The classic (and very read-
able) book which started the subject is Mandelbrot (1982).

6.8 Exercises

6.1 Perfume is released from a small point and diffuses through the air. If the typical
mean free path of the molecules is 1.3 × 10−7 m, and they have typical velocity
490ms−1, how long does it take before the peak of the radial density distribution of
perfume molecules reaches 1m away?
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6.2 Equation (6.2) gives an expression for the radial density profile resulting from
a 3D random walk. Verify that this is the same as the equation for the radial profile
of the 3D Gaussian equation in (5.5), if σ 2 = na2 where n is the number of steps,
and a is the size of each step. If we express the radial distance in units of σ , so that
R = zσ , show that the radial density profile is

ρ(z) ∝ z2e−z2/2

Show that the peak of the density profile is at z = √
2.

The expression above is for the density per unit radius, i.e. summed over a radial
shell. How does the density per unit volume depend on z? How does the density at
z = 5 compare to the density at z = 0? Given that the human nose can detect very
small numbers of molecules, why does this tell us that the calculation in the previous
problem significantly overestimates how long it takes for the smell to detected?

6.3 The previous question proves one of the results of Sect. 6.2.3, that the peak of
p(R) for a 3D random walk is at R = a

√
2n, where a is the step length, and n is

the number of steps. Can you prove the second result, that the mean of p(R) is at
R = a

√
8n/π? (Hint: you need the third “error integral” I3 = ∫ ∞

0 x3e−hx2 = 1/2h2.)

6.4 In our analysis of Poisson processes, we assumed that we can ignore the chance
of two events in the same time period Δt . Supposed that events are detected by a
particle counter at a rate of 10 per second. How small a time interval do we need to
consider so that the probability of two events is no more than 1% of the probability
of a single event?

6.5 The table below shows the frequency of time intervals between successive dis-
integrations of Thorium atoms in a radioactive sample, measured over the space of
2496s. (This is real data fromMarsden and Barratt 1911.) Does this match what you
would expect? Either plot the data with a theoretical curve over the top, or calculate
the corresponding expected numbers for each bin.

Time interval (s) Observed frequency
0–1/2 101
1/2–1 98
1–2 159
2–3 114
3–4 74
4–5 48
5–7 75
7–10 59
10–15 32
15–20 4
20–30 2
Over 30 0

6.6 If W50 means FullWidth at 50% of peak, i.e. FWHM, and W20 means FullWidth
at 20%, compare the ratio W20/W50 for the Lorentzian and the Gaussian.
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6.7 A particle physics experiment measures the energy at which a specific type
of collision event occurs. After measuring a few tens of collisions, it looks like
the distribution of collision energies is roughly Gaussian, with FWHM=0.86GeV.
An event is then seen at an energy 1.16GeV away from the mean energy. One of
the scientists points out this is at several sigma from the mean, with a probability
of less than one in a thousand, and therefore suggests a physically different kind
of event has been seen, which should be published quickly. If the distribution is
actually Lorentzian rather than Gaussian, how big a mistake would this scientist
be making? (Hint: you can approximately integrate the Lorentzian by noting that it
roughly follows x−2.)

6.8 It has been suggested that the number of individuals with wealth w follows a
power law density distribution n(w) = Aw−α , i.e. n(w)dw is the number of people
with wealth between w and w + dw. This is assumed to apply above some minimum
value wmin, and α > 1 in order for the total number of people to be finite. Show that
the richest half of the population is located at w > w1/2 = wmin21/(α−1). In the USA,
current evidence is that α ∼ 2.1. Show that the richest half of the population own
94% of the wealth.

References

Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical data. SIAM Rev.
51(4), 661–703 (2009)

Jacobs, K.: Stochastic Processes for Physicists: Understanding Noisy Systems. Cambridge Univer-
sity Press, Cambridge (2010)

Lemons, D.S.: An Introduction to Stochastic Processes in Physics. Johns Hopkins University Press,
Baltimore (2002)

Mandelbrot, B.: The Fractal Geometry of Nature. W.H. Freeman Company Ltd., New York (1982)
Marsden, E., Barratt, T.: The probability distribution of the time intervals of a particles with appli-
cation to the number of a particles emitted by uranium. Proc. Phys. Soc. 23, 367 (1911)

Newman, M.E.J.: Power-laws, Pareto distributions, and Zipf’s law. Contemp. Phys. 46, 323, (2005)

Websites (all accessed March 2019):

SAID database at George Washington University: http://gwdac.phys.gwu.edu
Web page associated with Clauset et al 2009: http://tuvalu.santafe.edu/~aaronc/powerlaws/data.
htm

Discussion of Pareto distributions at Wikpedia: https://en.wikipedia.org/wiki/Pareto_distribution
“High income distribution from the IRS”, a posting in “Economics as classical mechanics” by Ivan
Klitov: http://mechonomic.blogspot.co.uk/2012/02/high-income-distribution-from-teh-irs.html

http://gwdac.phys.gwu.edu
http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm
http://tuvalu.santafe.edu/~aaronc/powerlaws/data.htm
https://en.wikipedia.org/wiki/Pareto_distribution
http://mechonomic.blogspot.co.uk/2012/02/high-income-distribution-from-teh-irs.html


Part III
Probabilistic Inference: Reasoning

in the Presence of Uncertainty

In Part II, we looked at how frequency distributions arise in natural circumstances.
This can be seen as the “forward machinery” of the handling of probability—if we
know the circumstances that pertain, we can turn the handle on our machinery and
predict the distribution of events that we should see in an experiment. Now in Part III,
we look to see if we can run the machinery backwards—that is, given some events
that we observe, can we deduce what the physical circumstances must be? This is
the problem of Statistical Inference. For example, given a peak in the counts at some
channel number in our particle detector, can we say whether the particle that caused
this peak has a mass of 128 GeV or 134 GeV? If we want certainty, the answer is a
clear “no”—we cannot be sure which mass is correct. However, this doesn’t mean
we can say nothing.

The key concept behind all the methods in Part III is the idea of likelihood—if I
assume such-and-such, what is the probability I would have seenwhat I saw? In using
the idea of likelihood, there are two paths we can follow, that correspond to the two
different uses of the term “probability” that we met in Part I—the frequentist path,
and the Bayesian path. Historically, these have been often seen as philosophically
warring. In fact, they are both valid approaches to statistical inference, either ofwhich
can be used as long as we are careful about the statements we make.

In Chap. 7, we look at the basics of hypothesis testing. We first see how we can
use likelihood together with Bayes’s formula to adjust our initial (prior) degree of
belief in a hypothesis to get an updated (posterior) belief, after taking the observed
data into account. Alternatively, we can make an absolute test of our confidence
in a hypothesis, using the observed data. When we extend our ideas to multi-value
datasets, this turns out to be simple for Bayesianmethods, but for confidencemethods
requires us to combine our data points into a single test statistic. We introduce the
most important example, the χ2 test statistic, which quantifies the degree of scatter
in a dataset.

In Chap. 8, we look at how to use the ideas of hypothesis testing to estimate
the “best” value of a parameter, and the uncertainty on our estimate, by seeing
the possible values of the parameter as a kind of tuneable hypothesis. We explore
several different (closely related) ways to do this—by finding maximum likelihood,
maximum posterior, and minimum χ2.

http://dx.doi.org/10.1007/978-3-030-04544-9_7
http://dx.doi.org/10.1007/978-3-030-04544-9_8
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In Chap. 9, we look at how we deal with two variables, and how to test whether
or not there is evidence for a correlation between them. This involves clarifying the
ideas of independence and covariance. We then look at how we test the mathemat-
ical relationship between two variables, using the least squares method to find the
parameters of the best fitting line that goes through the data points.

Finally, in Chap. 10, we look at model fitting in general. We have most of the
apparatus we need from the previous chapters, but some extra subtleties arise when
we construct credibility or confidence intervals for multiple parameters, depending
on which parameters are considered “interesting”, and whether the parameters are
correlated. We also look briefly at practical numerical issues of how to find the
minima/maxima of multidimensional surfaces, and characterise their curvature, in
order to find best parameter values and their uncertainties.

http://dx.doi.org/10.1007/978-3-030-04544-9_9
http://dx.doi.org/10.1007/978-3-030-04544-9_10


Chapter 7
Hypothesis Testing

7.1 Outline of Content

• The idea of data likelihood
• Using Bayes’s formula to update hypothesis probabilities
• Confidence testing and P-values
• Pitfalls of P-values
• Bayesian inference with compound datasets
• Confidence methods with compound datasets: using test statistics
• The χ2 test statistic

A common activity in scientific life is the making of hypotheses followed by their
testing. For example, a theorist may state that “my theory implies that there should be
a particle of mass such and such; if youmake so and someasurements you should see
a spike in the data”. Some experimenters then make the necessary measurements.
There is a small spike in the right place, but a few other spikes that look almost
as big. Have we seen the theorised particle? Such theoretical predictions can seem
rather complicated. To get at the essence of this problem, lets look at somethingmore
artificial but much simpler.

Consider the urn so beloved of statisticians, containing coloured balls. If we
know that our urn contains four red balls and six black balls, we can calculate the
probability of picking three red balls in a row. Now suppose however we do not
know the number of red balls and black balls, but have just picked out three balls
and found them all to be red; can we now tell what the urn contains? The answer
of course is that we cannot make a unique and unambiguous deduction. But we can
make probabilistic statements. Suppose two colleagues make differing hypotheses.
ColleagueA suggests that the urn contains exactly three red balls and a hundred black
balls; Colleague B suggests that there are five of each. If we have just picked out
three red balls, then instinctively the first hypothesis (three red balls and a hundred
black balls) seems much less likely to be right than the second (five red balls and five
black balls). How do we firm up and quantify this instinctively reasonable feeling?

© Springer Nature Switzerland AG 2019
A. Lawrence, Probability in Physics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-04544-9_7
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7.2 Data Likelihood

The key concept is likelihood—the probability of getting the datawe have seen, given
the hypothesis we are assuming. To use this idea, we need a well framed hypothesis.
As well as stating the hypothesis unambiguously, we need to state it in a manner
that allows us to perform a calculation of the probability. For example, suppose
we have tossed a coin n = 10 times and found heads to come up x = 4 times. If
our hypothesis is “this coin is a fair one, which comes up heads or tails equally
often”, then we can calculate the likelihood L(x) from the binomial distribution for
p = 0.5, n = 10, x = 4. An alternative hypothesis could be “this coin is not fair; it
is weighted”. This is a perfectly valid logical hypothesis, but it doesn’t allow us to
calculate a likelihood. We would need to be more specific—for example, “this coin
is weighted and typically comes up heads eighty percent of the time”.

The experiment that produces the data also needs to be carefully defined. Our
coloured-balls problem is a good example. If we just say “we got three reds in a
row”, this is insufficient information—did we replace each ball before we picked the
next one, or did we put it to one side? Suppose we take the hypothesis that the urn
contains three red and three black balls. If we replace the balls, then the probability
of getting exactly three reds in a row is 3

6 × 3
6 × 3

6 = 1
8 = 0.125. If we do not replace

the balls, the probability of getting exactly three reds in a row is 3
6 × 2

5 × 1
4 = 0.05.

In general an experimentmight produce a set of numbers D = x1, x2, x3, . . .. If we
have an unambiguous hypothesis H , and we carry out a well understood experiment,
then we can calculate the joint probability of getting the complete set of numbers D
in those circumstances. We then define likelihood as:

likelihood L(D) = P(D|H) (7.1)

where D is understood as shorthand for x1, x2, . . .. For the first part of this chapter,
we will simplify matters by assuming that the experiment gives a single data value,
x . For example, x could be the number of red balls found after n picks, or the voltage
measured in some piece of equipment. Then we have L(x) = P(x |H). If X is a
discrete random variable (such as the number of red balls observed), then L(X) is
a simple probability. If x is a continuous random variable (such as a voltage value),
then L(x) is a likelihood density, i.e. probability per unit x .

Clearly, getting a smaller likelihood reduces the believability of a hypothesis.
How do we sharpen that idea? There are two ways, depending on the question we
are asking.

7.2.1 Comparing Hypotheses Using Relative Likelihoods

We might have several hypotheses and ask “which of these hypotheses is more
believable?”Given a number of hypotheses HA, HB, HC , . . .wecan calculate each of
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Fig. 7.1 The two ways of using likelihood values. Given a hypothesis H , we can calculate the
likelihood distribution L(x |H) for the possible values of the measured data value x . Given a specific
observed data value xobs, we could compare the predictions of two different hypotheses. In the
illustration above, hypothesis H2 is clearly a better explanation of the data than hypothesis H1,
because L2 > L1. Alternatively, we could consider the hypothesis H1 in isolation. The data value
xobs seems rather on the high side. The shaded area shows the integrated probability of getting a
value as large as xobs or larger. The smaller that area, the less confidence we would have in H1

L A(x), LB(x), LC (x), . . . in turn. It seems reasonable to choose the best hypothesis
as the one that gives the maximum likelihood. The idea is illustrated in Fig. 7.1.

Note that the absolute values of L do not matter. We need only the relative val-
ues, to tell us the relative preferences of our hypotheses. We can do better if we
give each hypothesis a quantitative probability value PA, PB, . . . (i.e. credibility, or
degree-of-belief, as discussed in Chap.1).Wemight start by assigning “initial guess”
probabilities. Then after performing the experiment, we can use the relative likeli-
hood values L A, LB, . . . to adjust our hypothesis probabilities in the light of the data.
In Sect. 7.3 we will carefully step through the method for implementing this idea.

7.2.2 Assessing a Single Hypothesis Using Absolute
Likelihood

Alternatively we might ask “how much confidence do I have in this hypothesis”?
In our earlier example, when we see three red balls in a row, we instinctively feel
dubious about the hypothesis that there are three red balls and a hundred black ones,
regardless of what hypothesis somebody else might suggest. But how small a value
of L(X) should make us suspicious?

The difficulty, as we discussed in Chap.1 (Sect. 1.4.4) is that absolute values
of L(X) for specific values of X are not very helpful. For example, consider our
example from Chap.4 (Sect. 4.5), of a department store selling diamond rings. The
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hypothesis might be that we are selling μ rings per week. If in any given week we
actually sell X rings, the likelihood of that happening will be given by the Poisson
distribution with μ and X . So for example if μ = 20.7, the likelihood of selling
exactly X = 25 rings is L(X) = 0.0523—it is fairly unlikely. But this shouldn’t
make us doubt the hypothesis. We would have been equally as impressed by selling
26, or 27. The likelihood of selling at least 25 rings comes from summing all the
individual likelihoods, and comes to L(X ≥ 25) = 0.198, a not very unlikely result
at all. If we are using absolute likelihood to test our confidence in a hypothesis, that
result would not impress us.

The situation is even more obvious for continuous variables such as a voltage,
because the probability of exactly x is formally zero. When testing a hypothesis
in isolation, we always need to consider likelihood integrated over a range. The
likelihood integrated over some range tests our confidence in our hypothesis, given
the data we have seen. A low value makes us trust the hypothesis less. The general
idea is illustrated in Fig. 7.1. But what integration range do we use? The answer to
this depends on the precise question one is asking. In Sect. 7.6 we will carefully step
through the method for implementing the idea of confidence testing.

7.3 Updating Credibilities Using Bayes’s Formula

Nowwewill take forward the idea of Sect. 7.2.1, comparing hypotheses using relative
likelihoods. In theBayesian approach,we start with an initial guess at relative degrees
of belief in our hypotheses, then use data to update those beliefs. This corresponds
to everyday reasoning. If I ask you “will it rain today?”, in the absence of any
information, you are likely to say “well I have no idea, so lets say 50-50”. You may
use background information to make a better starting guess. For example, if you live
in Arizona, your first guess would be rather different than if you live in Glasgow.
Then if you go outside and notice that the sky is dark grey and the atmosphere is
oppressive, that experimental data collection will change your degree of belief that
it will rain today. Of course this is all rather qualitative; how can we make this
method objective and quantitative? We have already seen in Chap.1 how we can
attach a probability (credibility) to a hypothesis. But how do we use the data to do
our updating?

7.3.1 Bayes’s Formula for Hypothesis Probabilities
(Credibilities)

You will recall from Chap.1 (Sect. 1.5.3) that if we have two events A and B, then
P(A, B) = P(B|A) · P(A) = P(A|B) · P(B), which leads to Bayes’s theorem
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P(B|A) = P(A|B)P(B)

P(A)
.

Once we realise that we can treat credibilities mathematically like probabilities, the
trick is to consider Bayes’s theorem with B = H where H stands for a hypothesis,
and A = D where D is a dataset resulting from an experiment. We could now write
Bayes’s theorem as

P(H |D) = P(D|H)P(H)

P(D)
,

but it is instructive to re-write the equation as follows

P2(H |D) = P1(H)
L(D|H)

L(D)
or in short P = π

L

E
. (7.2)

We can then interpret the formula as follows:

• π = P1(H) is the initial or prior probability of our hypothesis
• L = L(D|H) is the likelihood of our data, given our hypothesis
• E = L(D) is a normalising factor, and is the overall likelihood of the data
• P = P2(H |D) is the posterior probability of our hypothesis, i.e. the updated value.

In Sect. 7.2 we already looked at how to calculate likelihoods, given a carefully
framed hypothesis, and a well defined experiment. Now lets look more carefully at
how we deal with priors and posteriors.

7.3.2 Assigning Priors

We start by assigning an initial hypothesis probability or “prior” on a subjective but
reasonable basis. When we do this, we need to consider a complete set of hypotheses
under consideration, and make sure that the priors add up to 1.0. In our rain forecast
example, there are just two hypotheses—either it will rain or it won’t. We could
just simply give each of these π = 0.5. Alternatively, if we happen to know that in
our town it rains on average one day in four, we could start with π(rain) = 0.25 and
π(not rain) = 0.75. For the various “balls in urns” problems, there could in principle
be many different plausible hypotheses, but we need to start by clearly defining a set
of hypotheses that we are choosing to compare. The Bayesian method is all about
hypothesis comparison. Some scientists worry that choosing a set of hypotheses, and
assigning them priors, is a subjective process. Bayesians on the other hand see this
as a strength of the method, as it corresponds to normal scientific reasoning—we
begin by using our judgement, and then proceed objectively.
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7.3.3 Posteriors and How to Normalise Them

The posterior probability represents our degree of belief in the hypothesis, after
we take the data into account. The formula tells us that we re-scale the prior by
the likelihood, but normalised by the quantity E = L(D). How do we find this
normalising factor? To get this, we have to remember that although the formula
shows us how to update a single hypothesis, we should always be comparing a set
of hypotheses. Suppose we have two hypotheses A and B. Then we have

PA = πA
L A

E
PB = πB

LB

E
.

However, if we have a complete set of hypotheses, then we require PA + PB = 1.
Substituting from above and re-arranging we find

E = L(D) = πAL A + πB LB . (7.3)

More generally we find E = ∑
πi Li . The normalising factor E = L(D) is therefore

themarginal likelihood, i.e. the sum of the likelihoods for each hypothesis, weighted
by the prior probability for each. This can be interpreted as the overall likelihood of
the data, regardless of the hypothesis, but it is really just a normalising factor which
gives us properly normalised posteriors. The symbol E is used because marginal
likelihood is sometimes referred to as the “Bayesian Evidence” (see Chap. 10).

7.4 Bayesian Inference Worked Examples

7.4.1 Testing Spin State Theories

Suppose we have an experiment where we apply a magnetic field and then measure
the spin states of two particles; each could be found to spin-up or spin-down with
respect to the magnetic field. The possibilities are uu, dd, ud, du. In theory A, the
particles are indistinguishable, so ud and du are the same. The states occur at random.
Theory A therefore predicts that uu occurs a third of the time. However in Theory B,
ud and du are not the same, but again the states occur at random. Theory B therefore
predicts that uu occurs a quarter of the time. Before doing any experiments, we
have no obvious reason to prefer one theory over the other, so should assign a prior
credibility of 0.5 to each. Now suppose we run the experiment 25 times, and find
we get uu 11 times. How does that change our degree of belief in the two theories?
Summarising what we have:
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Hypotheses A : p(uu) = 1/3 B : p(uu) = 1/4

Priors πA = 0.5 πB = 0.5

Data x = 11, n = 25

The likelihood of getting x = 11 is given by the binomial distribution for n = 25,
with p given by the appropriate value for each hypothesis.

L A = fbin(n, x, p = 1/3) = 0.0862 LB = fbin(n, x, p = 1/4) = 0.0189.

The marginal likelihood is given by

E = πAL A + πB LB = 0.5 × 0.0862 + 0.5 × 0.0189 = 0.0526.

Finally, we get the posterior probabilities

PA = πA
L A

E
= 0.5 × 0.0862

0.0526
= 0.82 and PB = 0.5 × 0.0189

0.0526
= 0.18.

Note that PA and PB add up to 1.0. Taking the data into account makes Theory
A considerably more likely to be correct than Theory B, but it is far from certain.
What if we performed another experiment? We could then use the first experiment
as background information, and set the priors as πA = 0.82, πB = 0.18, and repeat
the calculation using the new priors and new data.

7.4.2 Particle Mass Test

Now we will look at an example using probability densities rather than discrete
probabilities. Suppose two rival theories predict the mass of a new particle as
mA = 223GeV and mB = 260GeV respectively. We can reasonably start by giv-
ing these hypotheses equal priors, πA = πB = 1/2. Now suppose an experimental
measurement gets a value x = 256 ± 12GeV, with the error taken to represent a
Gaussian distribution—in other words, we take x to be drawn from a Gaussian dis-
tribution with μ = mA or μ = mB , and σ = 12. Which theory is best? For theory A,
themeasurement 256 ± 12 is at a Gaussian deviation z = (223 − 256)/12 = −2.75.
The likelihood density is given by the Gaussian probability density at 2.75σ , which
is LA = 0.0091. For B we get +0.33σ which gives LB = 0.378. Note that we don’t
have to worry about the units of the probability densities, as long as they are both
the same—its only the relative values that matter. The marginal likelihood is

E = L AπA + LBπB = 1

2
(L A + LB).
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and so we get the updated probabilities

PA = 1

2

L A

E
= L A

L A + LB
PB = 1

2

LB

E
= LB

L A + LB
.

Putting the numbers in we find PA = 0.029 and PB = 0.971.

7.5 The Posterior Odds Ratio

When we are considering just two hypotheses, we could examine the ratio of the two
posteriors, in which case the marginal likelihood E cancels out:

PA

PB
= πA

πB

L A

LB
. (7.4)

If all we want is the relative probability of our two hypotheses, then we don’t need to
explicitly calculate E . If we re-express the posterior ratio as the ratio of two integers,
then we get a traditional betting style odds ratio, where we compare the chance of
something happening to the chance of it not happening. For example, if PA = 0.8
and PB = 0.2 so that PA/PB = 4.0 then we could refer to this as “4:1 on”. On the
other hand, if PA/PB = 0.3 this is the same as “7:3 against”.

7.6 Confidence/Significance Testing: P-Values

Now we return to the other method of using likelihoods—assessing our confidence
in a single hypothesis using absolute likelihood. As discussed in Sect. 7.2.2, for this
to make sense, we always need to consider likelihood summed or integrated over
a range. Suppose for example our hypothesis H implies some probability density
function p(x) for measured values of x , and that we have obtained an unexpectedly
large value of x . Then what we want is the “P-value”

P(> x) =
∫ ∞

x
p(x). (7.5)

We can then accept or reject H based on the value of P . The intellectually healthy
thing to do is to decide in advance what value of P = α would make us decide to
reject H . The value α is known as the significance level, and 1 − α is the confidence
level. For example, if we pick α = 0.05, then any P value less than α is said to be a
result at “5% significance”, or conversely would allow us to reject at 95% confidence.

Another way of looking at this is as follows. Having chosen our significance level
α, we can find a critical value of x = xcrit where P(> xcrit) = α exactly. Then when
we make the measurement, any value with x > xcrit would cause a rejection. We can
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divide all possible points x into those in the rejection class with x > xcrit and those
in the acceptance class with x < xcrit .

7.6.1 The Idea of a Null Hypothesis

Why this emphasis on rejection rather than acceptance? Note that in this approach,
we are avoiding giving our hypothesis a sliding-scale numerical credibility, but just
looking at how likely our data is. If in fact, a hypothesis is correct,wedon’t necessarily
expect a large P value—we will get x values spread either side of the mean and can
easily get P = 0.5 or 0.2 or 0.7 etc. So it makes sense to provisionally accept a
hypothesis as true, unless we see some data that causes us doubt. However it would
be a mistake to automatically provisionally accept a controversial or interesting
hypothesis, such as “I propose there is a previously unsuspected particle”, or “Lima
beans cause cancer”. That would give equal credence to too many potential ideas.
So instead, the normal procedure is to identify a boring or null hypothesis that we
must reject before we consider other hypotheses. For example, to test the Lima
bean hypothesis, the null hypothesis would be that eating Lima beans has no effect
on cancer rates. Suppose that the proportion of people with cancer in the general
population is well known, and also its variance. Then we take a sample of Lima bean
eaters, and test them and get some number. The null hypothesis would predict the
probability distribution for our observed value, and we can calculate the P value for
our result. If P is small we reject the null hypothesis. This does not prove that the
Lima bean hypothesis is correct; it is just that it can at least be considered.

7.6.2 One-Tailed Versus Two Tailed Tests

Above, we considered only large values of x , and rejected any value with x > xcrit .
This is known as a “one-tailed test”. However, in some cases small values of x might
also be suspicious. In this case we will want to construct a rejection class split into
two parts, at high and low values, as indicated in Fig. 7.2. We therefore pick two
boundary values x1 and x2, chosen so that P(< x1) + P(> x2) = α. This is known
as a “two-tailed test”. Unfortunately there are infinitely many ways to do this. If p(x)
is symmetrical, then we can at least place x1 and x2 an equal distance either side of
the mean, and the problem is solved. For an asymmetric p(x), the choice of x1 and x2
is arbitrary, but we can at least ask that they be decided before the test is conducted.
One standard method is to set the boundaries equidistant from the mean, such that
the integrated probability in the central acceptance region is equal to 1 − α. Note
however that the upper and lower rejection regions will then not be the same size, as
illustrated in Fig. 7.2.

How do we know when to use a one-tailed test, and when to use a two-tailed
test? For this we do need to know not just the null hypothesis, but also the alternative
hypothesis. Supposewe are tossing a coin, but suspect it is biased. The null hypothesis
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Fig. 7.2 Comparing one-tailed and two-tailed 10% significance tests.Upper: In this illustration the
likelihood distribution is symmetrical. The shaded region at x > x1 contains 10% of the probability,
and so is appropriate for a one tailed test. The choice of x1 is unique, given the requirement for
P = 0.1. The two darker shaded regions contain 5% probability each, and so are appropriate for a
two-tailed test. The choice of upper and lower values is arbitrary, but fixed if we require the two
shaded regions to be the same size. Lower: In this case L(x) is asymmetric, and it is much less
clear how to choose upper and lower boundaries. We could require the upper and lower regions
to have 5% probability each, which gives the shaded regions, or we could for example ask for the
boundaries to be symmetrically placed either side of the mean, which gives the boundaries indicated
by the vertical lines

is that the coin is fair. We toss the coin a number of times, and the null hypothesis
predicts a probability distribution for the number of heads. If we simply have some
reason to suspect the coin is not a fair one, we would consider both low and high
points, and do a two-tailed test. If however we have a reason to suspect the coin
is biased towards heads, we are not interested in low points, and should do a one-
tailed test.
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7.6.3 Gaussian z-Test

In very many cases, the null hypothesis will predict some true value xt , with a
Gaussian distribution of measured values x , perhaps because the measurements have
normally-distributed errors. Assuming that we know both the mean μ and standard
deviation σ for the predicted distribution of measured values x , likelihood values are
completely determined by the normalised deviation from the mean, z = (x − μ)/σ .
How often will we get various values of z?

In Chap.5 we saw that the area under a Gaussian within z = ±1, 2, 3 is 68.3%,
95.5%, and 99.7% respectively. (Often expressed as being “within 2σ” and so on.)
So on a two-tailed test, if our data value gives say z = 2.1, we could reject the null
hypothesis at 95% confidence, but not at 99% confidence.

Suppose we turn this round, and ask what are the critical values of z we need
for 90, 95, or 99% confidence? This depends of course on whether we perform a
one-tailed or two-tailed test. Standard tables show us that the answer is

one-tailed two-tailed
90% z = 1.28 z = 1.64
95% z = 1.65 z = 1.96
99% z = 2.33 z = 2.58

7.7 Significance Testing Worked Examples

7.7.1 The Dodgy Coin

Suppose we have a coin that we suspect is biased towards heads. Then p = 1/2 is the
null hypothesis, but we are interested in a suspiciously large number of heads, so we
decide to do a one-tailed test, and look for 5% significance level, or 95% confidence.
We toss the coin n = 10 times, and get x = 8 heads. The binomial formula shows
that for p = 1/2 the value x = 8 has probability 4.4%. However, 9 or 10 heads have
probability 1.0 and 0.1%, so the probability of x = 8 or larger is P = 0.055, and we
cannot reject at 95% confidence. Only x = 9 or x = 10 would be in the “rejection
class”. Note that if we had tossed the coin 20 times and got 16 heads—exactly the
same fraction as 8 out of 10 heads—the probability of x = 16 or worse would be
0.59%, and we would be able to reject the null hypothesis that the coin is fair at high
confidence.

7.7.2 The Flaring Star

Some stars undergo rare outbursts lasting several days. One night, an observation of a
suspected flaring star finds it to be somewhat bright. Should we devote telescope time
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to observing it repeatedly over the coming days? The star was observedwith a photon
counting detector over a one hour exposure, and 238 counts were recorded. Given the
normal brightness of the star, 202 counts would have been predicted. Is the difference
likely to be real? Only high points are interesting, so we do a one-tailed test, and
because telescope time is expensive, we look for 99% confidence. The null hypoth-
esis predicts a Poisson distribution with μ = 202 and σ = √

202 = 14.21. What is
the probability of x = 238 or worse? Rather than explicitly calculating the Poisson
distribution values for 238, 239, . . .we note that the mean of 202 is large enough that
the Poisson distribution will be well approximated by a Gaussian. For a one-tailed
test, 99% confidence needs z > 2.33. In this case, z = (238 − 202)/14.21 = 2.53.
The observed brightening is therefore very significant.

7.7.3 The Probability of Nothing

Let us return to our sales-of-diamond rings problem. Suppose in any given week a
department store sells on average 3.4 rings. One week they sell none at all. Does that
indicate something has gonewrong?Or is it just a fluke? In this case, because numbers
are small, we should certainly use the proper Poisson distribution. For a given μ, we
simply have p(x = 0) = e−μ. So for μ = 3.4 we get P = 0.033. That result is then
significant at 95% confidence but not at 99% confidence. However, this conclusion
could fall foul of the “multiple test trap” (see below). A value of P = 0.033 means
one chance in thirty. So if we watch the figures every week, selling nothing is bound
to happen once or twice a year…

The problem of seeing nothing is quite common, so its worth working out some
standardised critical values. For a chosen significance level α, we can ask, what value
of μ would give a chance that small of seeing nothing? This is just

μcrit = − ln α. (7.6)

So for seeing nothing to be significant at 5%, i.e. to reject at 95% confidence, we
need μ > 3.00; for 99% confidence we need μ > 4.61. Put another way, if we see
nothing, then there is still a 1% chance that actually μ is as large as 4.61.

7.8 Pitfalls of Using P-Values

There are several common problems when using P values.
(i) Getting fooled by flukes. The decision from significance testing is always

provisional. Getting a result at 5% significance does not mean you have disproved a
null hypothesis. It means that if you reject it, you’d be right 19 times out of 20 and
wrong 1 time out of 20. Rejecting the null hypothesis when in fact it turns out to be
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true is known as a “Type I error”. Failing to reject when in fact the hypothesis is false
is known as a “Type II error”.

(ii) We learn nothing about the interesting hypothesis. Typically one starts with
an “interesting” hypothesis, carefully constructs a corresponding null hypothesis, and
then tests this. However, many different “interesting” hypotheses could correspond
to the same null hypothesis. If we (provisionally) reject the null hypothesis, it does
not tell us whether our original interesting hypothesis is correct; it just means it lives
to fight another day.

(iii) The “wrong distribution” problem. If we believe that our data points are
normally distributed, but in fact they turn out to be distributed in a Lorentzian fashion,
we could badly underestimate the probability of a high point. This is important
because we quite often use a Gaussian approximation to other distributions; this may
be good at small multiples of σ but much poorer at higher multiples. Of course this
problem also applies to Bayesian inference.

(iv) The multiple test trap. Suppose we have 20 data points, and find that one
them is high, appearing at 2.5σ . This has only a 1% chance of happening for any
one data point; but we have 20 shots at that 1% chance, so in fact seeing one high
point is not particularly impressive. Sometimes you have implicitly done multiple
tests without realising it. The diamond-ring problem above is a typical example. You
only think to do the test when you see a strange result.

(v) The false positive problem. This is really a combination of problems (ii)
and (iv). Suppose an airport security team are using face-recognition software to
spot terrorists. The null hypothesis is that any specific passenger is not a terrorist, in
which case there is, say, only a 1% chance that the software will think it has spotted
a terrorist. So if the software raises the alarm, does this mean there is a 99% chance
that person is terrorist? No. Suppose one passenger in 10,000 is a terrorist; but one
(non-terrorist) passenger in every 100 is setting off the alarm. So as passengers stream
through, the false alarms will be outnumbering the terrorists by a factor of 100.

7.9 Comparing Bayesian and Confidence Testing Results

We have looked at two different ways of using likelihood to perform statistical
inference. How do they compare? They are consistent, but the Bayesian method
gives us more information, especially with modest amounts of data. Let us look at a
very simple example.

Supposewe arewatching someone toss a coin, whichwe suspectmight be doubled
headed. Let us label the hypothesis of there being two heads as HH , of two tails as
T T , and of a normal coin as HT . Our data result can be labelled h for heads and t
for tails. If we toss the coin once and get h, what can we say about the hypothesis
HH?

First, consider this problem with the significance testing method. Given that
L(h|HH) = 1 this suggests that we have no information at all. We certainly cannot
reject HH . But of coursewe should really propose that HT is the null hypothesis and
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test that. In this case L(h|HT ) = 1/2, so we can’t even reject the null hypothesis.
So in this approach, we could conclude that we have no useful information at all.
Now lets try the Bayesian method. If we assume we start with ignorance so that HH ,
T T , and HT are all equally probable, then π(HH) = π(T T ) = π(HT ) = 1/3. In
this case getting a result of heads certainly does give us information. The likelihoods
are L(h|HH) = 1, L(h|T T ) = 0, L(h|HT ) = 1/2, and we get E = 1/2; updating
using Bayes’s formula we get P(HH) = 2/3, twice as likely as before the exper-
iment. So in this simplest case the significance and Bayesian methods give very
different answers.

Now supposewe toss the coin twice and get heads both times. Using the posteriors
from the one-toss experiment as our new priors (noting π(T T ) = 0), we can update
again, and we find P(HH) = 4/5, P(HT ) = 1/5. For the significance analysis,
we would consider the probability of getting two heads out of two tosses, which is
given by the binomial distribution: L(2h|HH) = 1 and L(2h|HT ) = 1/4. So now
the significance with which we could potentially reject HT , P = 1/4, is close to,
but not identical to, the Bayesian probability of HT , P(HT ) = 1/5. This difference
becomes smaller with more tosses. If we get 4 heads out of 4 tosses, L(4h|HT ) =
1/16 whereas the Bayesian analysis gives P(HT ) = 1/17.

In general, the significance and credibility methods give qualitatively similar but
not quantitatively identical answers. This is because the methods are asking related
but different questions, both of which are reasonable. The credibility method is
asking “what is my relative degree of belief in this hypothesis, compared to the other
possible hypotheses?” whereas the significance method is asking “if I were to bet on
this hypothesis, how often would I lose?”

7.10 Hypothesis Testing with Multi-value Datasets

So far in this chapter, we have implicitly or explicitly assumed that the data concerned
is a single event, or a single data value x , or that a single data value for testing can
very simply be extracted from the data—for example, testing a single discrepant high
point. But what if the data concerned is a collection of two or more data values? How
dowe use these to do our testing? This is an area where the Bayesian and significance
techniques are rather different.

7.10.1 Bayesian Inference with Compound Datasets

Because we simply use the point likelihood, or the likelihood density, with no need
to integrate over a range, the Bayesian method deals with compound datasets quite
simply, using the joint likelihood or likelihood density. Continuing the particle-mass
example from Sect. 7.4.2, suppose we have the same two hypothesesmA = 223GeV
and mB = 260GeV. However, now measurements have been made by three differ-
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ent labs, with results x1 = 256 ± 12, x2 = 216 ± 16, x3 = 238 ± 13. Given hypoth-
esis A we can calculate the joint likelihood density L A(x1, x2, x3) = L(x1|mA) ·
L(x2|mA) · L(x3|mA), and similarly for LB where the individual likelihoods are just
given by theGaussian probability density at the relevant z-deviation. Each of the joint
probabilities L A and LB may be quite small, and their absolute values, because they
are densities, are dependent on the units being used; but none of this is a problem,
because all that matters is the relative values of likelihood density for the various
hypotheses under consideration. The marginal likelihood is given by

E = L(D) = LA(D)π(A) + LB(D)π(B),

where D is shorthand for the complete compound dataset x1, x2, x3. We then get the
posteriors just as before, with

P(A) = π(A)
L A(D)

E
P(B) = π(B)

LB(D)

E
. (7.7)

The ability to deal with compound datasets in a simple way, and indeed the same
way each time, is a big advantage of the Bayesian method.

7.10.2 Significance Testing with Compound Datasets:
Test Statistics

In discussing significance testing, we saw the necessity of integrating likelihood over
a range of data values, both to get sensible values we can compare from one situation
to another, and to get the sense we wanted of “this unlikely or worse”. However,
with a compound dataset x1, x2, x3, . . . its not at all obvious how to pick a sensible
integration region. Even for two variables, there are many different reasonable ways
you could do this, as illustrated in Fig. 7.3.

Fig. 7.3 Illustrating how one could integrate over a two dimensional probability density function
in several different ways. In each part of the figure, x and y represent the random variables, with
the grey scale representing the joint probability density. The dashed lines indicate regions we could
choose for summing the probability



130 7 Hypothesis Testing

The solution in traditional statistical inference is to combine the data values into
a single number test statistic K . For example, we could find the mean of all our
data values; or we could look at the deviation of each number from some prediction,
and find the average deviation. Then we could ask the question “assuming the null
hypothesis, if I ran this experimentmany times, what distribution of K values would I
get?”. This is known as the sampling distribution for K . Finally, we can compare our
observed value of our test statistic with the expected distribution in order to decide
whether to accept or reject the null hypothesis. A large part of traditional statistics
consists of deriving and studying the distributions of such test statistics.

7.10.3 Sample Mean z-Test

Perhaps the simplest example of a test statistic is themean value of a set of data values,
whichwe could then compare to a hypothesised true value. If there are N original data
points, and they are eachnormally distributedwith varianceσ 2, then the averageof the
N points should also be normally distributedwith variance σ 2

K = σ 2/N . (You can see
this from the standard error propagation formulae; consider adding N variables. See
also Chap.8, Sect. 8.3.) We can then revert to our standard z-test using this new σK .

Suppose we don’t know the value of σ—can we still use the sample mean test?
This requires the use of the t-statistic, which we shall discuss in Chap.8, Sect. 8.3.4.

7.11 The χ2 Test Statistic

By far themost important test statistic isχ2. It is the singlemost common test statistic
you will encounter in the statistical and scientific literature. The general idea is to
test the scatter of our data points compared to some prediction. Suppose we have a
set of N measurements xi , and our hypothesis is that the true value is xt . We further
suppose that the measurements all have the same Gaussian error distribution, with
standard deviation σt . In other words, we assume that the xi are independent random
variables, each of which is drawn from the same parent distribution with mean xt
and variance σ 2

t .
Our first guess for a statistic representing data spread might be to sum all the

values of xi − xt , but that will typically average to zero, which isn’t helpful. We
might consider using |xi − xt |, but this is hard to deal with mathematically. So, just
as when we were considering the variance of a distribution, the simplest practical
answer is to use (xi − xt )2. We also want to normalise to the expected standard
deviation, just like with the z statistic. We therefore define the test statistic

χ2 = 1

σ 2
t

N∑

i=1

(xi − xt )
2. (7.8)



7.11 The χ2 Test Statistic 131

7.11.1 χ2 as Excess Variance

Notice that the summed expression is very similar to the standard formula for vari-
ance, σ 2 = (1/N )

∑
(xi − μ)2. If we think of (1/N )

∑
(xi − xt )2 as the “observed

variance” σ 2
obs then we can see that

χ2 = N
σ 2
obs

σ 2
t

.

The χ2 statistic is therefore telling us how much the data points scatter about the
prediction, compared to howmuchwewould expect them to scatter. If the hypothesis
is good, then we should normally have χ2 ∼ N . If we divide by N , this “normalised”
χ2 should typically be equal to 1. The normalising factor is known as the “degrees of
freedom” and is given the symbol ν. In our first simple case here, we just have ν = N .
Later on, when we talk about parameter estimation andmodel fitting, we will see that
the effective number of degrees of freedom is ν = N − m where m is the number of
parameters fitted. In general, it is customary to define the “reduced chi-squared” as
χ2

ν = χ2/ν and this will in general be close to 1.0 for a good hypothesis.

7.11.2 Distribution of χ2

Typically we should have χ2 ∼ N , but how do we tell what a “bad” value of χ2 is?
Let us re-iterate the standard procedure we set out earlier. The null hypothesis is that
all the N values xi are drawn from the same underlying Gaussian with mean xt and
variance σ 2

t . If we were to repeat the experiment many times, what distribution of
χ2 values would we get? In other words, what is the sampling distribution for χ2?
Then if we see an unexpectedly large value of χ2, we know how often this should
happen by chance.

Let us start by asking, if a random variable x has a Gaussian distribution, what
will be the PDF of the variable y = x2? To conserve probability, we need p(x)dx =
f (y)dy and so the probability density for y is given by f (y) = p(x)/(dy/dx)which
gives

f (y) = 1√
8π

y−1/2e−y/2.

Generalising further, if we have ν independent random variables x1, x2, . . . , xν and
each of these is normally distributed with meansμ and variance σ 2, then the quantity
we want is

y = χ2 =
ν∑

i=1

[
xi − μ

σ

]2

.
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Fig. 7.4 Illustrating the χ2

distribution for three
different values of the
degrees of freedom ν
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Calculating the PDF of this sum of random variables is a little involved so we won’t
derive it here. The result is that the PDF for our new variable y is given by

fν(y) = fν(χ
2) = 1

2ν/2Γ (ν/2)
y

ν
2 −1e−y/2. (7.9)

Note that this defines a PDF f (y) for the variable y = χ2, so the density is per-
unit-χ2 not per-unit-χ . We have written fν(y) to show that the PDF is a function of
y = χ2, but there is a family of curves for different values of the parameter ν. HereΓ

is the usual gamma-function, and ν is the degrees of freedom as discussed above. This
distribution has mean ν and variance 2ν, but the shape of f (y) = fν(χ2) depends
quite strongly on ν, as shown in Fig. 7.4. At small values of ν the distribution is very
asymmetric; at large ν it tends towards a Gaussian shape.

7.12 Using χ2

Just like with other test statistics, what is really interesting is not the probability
density f (y), but its integral P = ∫ ∞

y f (y)dy. A good hypothesis will give χ2 ∼ ν.

A bad hypothesis will normally give a larger value ofχ2. In other words, the question
we want to answer is “on the null hypothesis, what fraction of times would we get a
value of χ2 that large or larger by chance?”. Unfortunately the integral of χ2 does
not have an analytic solution, so like with the Gaussian z statistic we use tables or
computer routines. Note that when looking up P values for χ2 you have to look up
both the right value of χ2 and the right value of ν.
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7.12.1 A Variable Star

Suppose we have measured the brightness of a star four times, and we got 256, 239,
237, and 278 counts respectively. Is there any evidence that this star is variable,
or are the differences just random? A theorist has predicted that we ought to see a
constant value of 251 counts. We can use Poisson statistics to find that we ought to
have σ = √

251 = 15.84. Count values of this size are large enough that a normal
distribution should be a good approximation. Using these predicted values of μ =
251 and σ = 15.84 we can compare to each of the four observed values. This gives
us a value of χ2 = 4.36, compared to the expected mean of χ2 = 4.0. Looking up in
our table, we find that P(χ2 > 4.36) = 0.36 for ν = 4—in other words a χ2 value
that big or bigger occurs 36% of the time. The spread of points we got is therefore
nothing remarkable. The star could still be variable, but we have no evidence for it.

7.12.2 Using Individual Errors

Above, we assumed that σ is the same for all our data points xi . However, a quite
common situation is that the hypothesis that we are testing specifies xt , but each data
point has a different error given by σi . We then calculate

χ2 =
N∑

i=1

(xi − xt )2

σ 2
i

. (7.10)

Thismakes no difference to the theoretical PDF forχ2, but sometimes couldmake
quite a big difference to the observed value of χ2, so we get a more sensitive test if
we do know individual errors.

7.13 Key Concepts

Some of the key concepts from this chapter are:

• The idea of likelihood as the probability of the data given the hypothesis
• The difference between comparing hypotheses using point likelihood or likeli-
hood density values, and testing confidence in a single hypothesis using integrated
likelihood

• The use of Bayes’s formula to update hypothesis probabilities (credibilities) given
the data likelihood

• The importance of background information in setting prior credibilities
• The importance of choosing a significance level in advance before carrying
out a test
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• The idea of trying to reject a null hypothesis, rather than trying to prove an inter-
esting one

• The idea of a test statistic
• The use of the Gaussian z-statistic
• The use of the Poisson “nothing seen” test
• The idea of the χ2 statistic to test the scatter of data points compared to that
expected under a null hypothesis

• The behaviour of the χ2 distribution—asymmetric at low ν, converging towards
symmetric Gaussian form at high ν.

The key formulae from this chapter are: the definition of likelihood (7.1); the
formula for updating hypothesis probabilities using data likelihoods ((7.2) and (7.7));
the formula for calculating the marginal likelihood or Bayesian evidence (7.3); the
formula for comparing hypotheses using the posterior ratio (7.4); the formula for a
P-value by integrating over a PDF (7.5); the formula for the “see nothing” critical
value of the mean in a Poisson process as a function of significance level (7.6); the
definition of theχ2 test statistic ((7.8) and (7.10)); and the formula for the distribution
of χ2 (7.9).

7.14 Further Reading

Traditional statistics textbooks (see Chap.1 references) are very strong on signifi-
cance/confidence testing, and discuss a bewildering variety of test statistics. Most
of the time all you need is either the Gaussian z-test or the χ2 test. Recently a lot
of scepticism has emerged about the use of P-values (see for example Baker 2016
and the references and links therein). As far as I can see, it all centres round one
or more of the pitfalls described in Sect. 7.8. There is nothing wrong with P-values
as long as you know what you are doing, but they are certainly mis-used. By far
the worst problem I think is the unconscious multiple test trap—only the interesting
results get published.

Bayesian techniques have a long history, starting with Bayes (1763), but for most
of the nineteenth and twentieth century statistics was dominated by significance test-
ing. Slowly over the last few decades, Bayesian methods have become very popular,
but most of the development was in rather advanced research papers or special-
ist books (see Chap.1 references). It has taken a while to sink in how simple the
Bayesian method is. Sivia and Skilling (2006) was the first really good simple book.
Another really good short book that is well suited to both beginners and specialists
is Stone (2013).

7.15 Exercises

7.1 A lab measures the mass of the Yotta particle as a test of their equipment, as
it should give m = 1375GeV, and if their equipment is working as expected, each
measurement should have a Gaussian error σ = 65GeV. They make four measure-
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ments, which give 1326, 1376, 1422, and 1512GeV respectively. Consider these two
different scenarios, using a 5% significance test:

(a) Before looking at the results, one of the scientists involved has claimed that
there was a problem with the equipment on the fourth measurement, likely to make
the value too high. When the results come out, do they support this suggestion?

(b) After the results come out, the high value on the fourthmeasurement is spotted,
which makes the experimental team concerned that there is a problem with the
equipment. Do the data values support this suggestion?

7.2 For an exercise class in statistics, a technician has fetched from the lab an urn
containing coloured balls. You know that there are two of these urns—urn A has 10
red balls and 20 black balls; urn B has 15 red balls and 15 black balls—but you don’t
know which one the technician has fetched. One of the tutors, Fred, claims with
confidence that the technician fetched urn A; but Jane claims with equal confidence
that urn B was fetched. You have no particular reason to trust Jane more than Fred or
vice versa. You do a test run, picking out three balls in succession, replacing the ball
each time. All three picks give red balls. On a Bayesian basis, how does this change
your view of whether Fred or Jane is most likely to be right? Fred then insists you try
again, and you pick out two black balls in succession. What now is the probability
that Jane is right?

7.3 A student is fitting a curve to some data points. (We will learn how to do this in
Chap.8.) They are not sure how to calculate their error bars, but notice that five out
of six points lie above the line, which makes them suspicious. Is this in itself enough
to make them reject the fit? Is there a Bayesian way to approach this problem?

7.4 Achemical spray is known to kill 75%ofmosquitos. Amedical worker is testing
a batch which they suspect to be faulty. They spray 100 mosquitos and find that only
65 of them die. Are their suspicions justified? What if they had found 60 to die?
What if they tested on 1000 and 650 died?

7.5 An experiment is measuring Thorium decays. The standard theory predicts a
decay rate of 0.35 s−1. A new theory predicts 0.37 s−1. How long do we need to run
the experiment to distinguish the two theories at 95% confidence?

7.6 We normally expect that a poor hypothesis, or incorrect parameter value, will
give a value of χ2 larger than the mean value expected for a good hypothesis, χ2 ∼
ν; values smaller than ν will just occur by chance sometimes for any acceptable
hypothesis. However, experimenters sometimes find that consistently small values
of χ2 keep appearing in their data analysis, more often than ought to happen by
chance. What do you think might be causing this problem?

7.7 For an underlying Gaussian with mean μ and standard deviation σ , what is the
likelihood density of a given data point x? If instead you have a collection of N data
points xi , each with its own error σi , what is the joint likelihood of this set of values?
You can consider each point to be drawn from a different Gaussian, all with the same
μ, but with different σi . Also, we can consider the σi s to be fixed, and so think of the
likelihood as a function of μ. Use this to show that ln L = const − χ2/2
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7.8 An experiment is undertakenmeasuring the time T it takes for ametal ball to fall
2.00m. The measurement is done 50 times, as precisely as possible, but the results
are then grouped in to bins of size 0.01 s. The results are shown in the table below.

Estimate the observed sample mean Tobs and standard deviation σobs. From your
knowledge of physics, calculate what the correct answer for flight time T f should
be. Then test the observed distribution of measurements against the expectation of a
Gaussian distribution withμ = T f and variance σ 2

obs. Do this by making a prediction
for each bin, calculating an appropriate error for that individual bin as a separate data
point, and finally using the χ2 statistic.

Time (s) Observed frequency
0.59–0.60 2
0.60–0.61 2
0.61–0.62 11
0.62–0.63 6
0.63–0.64 12
0.64–0.65 8
0.65–0.66 4
0.66–0.67 3
0.67–0.68 1
0.68–0.69 1
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Chapter 8
Parameter Estimation

8.1 Outline of Content

• Sample-based estimators for mean and variance
• Unbiased variance estimator
• Confidence intervals from z and t statistics
• Maximum Likelihood estimates
• Maximum Posterior estimates
• Constructing posterior probability intervals
• Minimum χ2 estimates
• Constructing χ2 confidence intervals

Rather than getting a yes-no decision on a hypothesis (“is this dataset consistent
with the existence of a boson?”), we often want to estimate the value of one or more
parameters (“based on this data, what is the mass of the boson?”). The problem of
parameter estimation is closely related to that of hypothesis testing. You can think
of there being a family of hypotheses, with some tuneable parameter θ . If we try out
different values of θ , how do we decide which value is “best”? And what range of θ

values do we find acceptable?
There are two routes forward. Sometimes, the Nature of the parameter we wish

to estimate suggests a simple sample-based method, giving us some kind of formula
or algorithm for calculating our estimate. An example would be taking the mean of
a series of N measurements as our estimate of the true value that we have repeatedly
tried to measure. But then, what is the uncertainty on that process? To answer that,
we imagine repeating our experiment of N measurements many times and looking
at the distribution of answers.

The second route forward is to try out a range of θ values, and for each value
to calculate a number which quantifies the agreement between the hypothesis and
the data. The usual choices for such an agreement-testing number are the likeli-
hood L , the posterior probability P , or the scatter χ2. We can then examine the
resulting function—either L(θ) or P(θ) or χ2(θ)—and choose the θ value which
maximises/minimises the function as our “best” value. This gives us a point esti-
mate. We can also use our function to answer a question such as “what range θmin to
θmax gives me 90% of the posterior probability?”. This provides us with a parameter
interval.
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In this chapter we will normally be considering a single parameter θ , or at most
two parameters. In Chap.10, we will see how these methods generalise to multi-
parameter model fitting.

8.2 Estimating Mean and Variance of a Normal Population

The methods we will discuss in the sections below are quite general, but in order to
develop them we will repeatedly consider variations of the same simple problem—
how to estimate mean and/or variance from a set of data values, believed to be drawn
from a normal distribution. There are three main variants to consider.

(i) Unknown μ, known σ . For example, we might be attempting to measure the
mass m of a particle, and so make multiple measurements xi , each of which has a
known experimental error σ . Then each xi can be seen as a random drawing from a
normally distributed population with mean m and variance σ 2, and the problem is to
find an estimate of m.

(ii) μ and σ both unknown. For example, we might wish to find both the typical
height of a particular species of animal, and the spread in this quantity. Alternatively,
in the context of the mass-measurement example above, it might be that we don’t
know what the experimental error is, and wish to estimate it from our dataset at the
same time as estimating the mass.

(iii)Unknownμ, individual errors. A common situation is that each measurement
xi is supposed to be a measurement of the same thing, for example particle mass m,
but has a different experimental error σi . Then each xi is assumed to be drawn from
a normal distribution with the same mean, but with a different variance for each data
point.

In the worked examples below, we repeatedly use the same example dataset—
N = 6 measurements which give values xi = 256, 239, 237, 278, 266, 241.

8.3 Methods Using Sample Mean and Variance

If we had a single value x , that would clearly be our best estimate of μ. When we
have a series of equivalent measurements, it would seem obvious that the thing to do
is to average the estimates. Likewise, we might consider the spread of data values
around the average to be a reasonable estimate of the variance of the population from
which the data values have been drawn. So in other words, we estimate μ and σ

using the sample mean and variance:

μ̂ = x̄ =
∑

xi/N σ̂ 2 = s2 =
∑

(xi − x̄)2/N . (8.1)
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Note that here we use the notation μ̂ to mean “estimate ofμ”. Sometimes we need to
distinguish carefully between the estimator, which refers to the algorithm or formula
used, and the estimate, which refers to the estimated value. It is (hopefully) clear
from context which we mean in various cases.

Applying thismethod to the example dataset at the end of Sect. 8.2weget μ̂ = x̄ =
252.83 and σ̂ = s = 15.26. However, there is a problem in using sample variance to
estimate the population variance, which we discuss next.

8.3.1 Bias in Sample Variance

Using sample variance as an estimator for the true population variance, together
with the sample mean as an estimator for the true mean, produces a biased estimate
for variance. To see why, imagine trying various different values μ′ for the mean,
and seeing what sample variance we would get if that was actually the true value:
s2 = ∑

(xi − μ′)2/N . What value ofμ′ would give us the smallest value of s2? This
comes from

ds2

dμ′ = 0 = 1

N

∑
(xi − μ′)2 = 2

N

∑
(xi − μ′) = 2

N

(∑
xi − Nμ′

)

and therefore

2
∑

xi
N

= 2μ′ and so μ′ =
∑

xi
N

= x̄ .

In other words, the usual sample mean is always exactly the value which gives us the
smallest sample variance. But remember that the sample mean will not in general
be quite the same as the true population value. If we actually used the true value
of μ, the analysis above shows that this would in fact always give us a larger value
of s2 than the standard sample variance; the sample variance is therefore a biased
estimate. Note by the way, that if we used a fixed hypothesised value for μ, and
estimated variances as σ̂ 2 = ∑

(xi − μ)2/N , that would not give a biased estimate;
the problem is only when we use the same data for both μ̂ = x̄ and σ̂ = s.

How different is the sample variance s2 from the true variance σ 2? Let us work
out the expectation value of σ 2 − s2.

E[σ 2 − s2] = E
[
1
N

∑
(xi − μ)2 − 1

N

∑
(xi − x̄)2

]

= 1
N E

[∑
(x2i − 2xiμ + μ2) − ∑

(x2i − 2xi x̄ + x̄2)
]

= 1
N E

[
Nμ2 − N x̄2 − 2Nμx̄ + 2N x̄2)

]

= E
[
μ2 − 2x̄μ + x̄2)

] = E
[
(x̄ − μ)2

]
.
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The expression we have ended up with is the expected value of the square of the
difference between the true population mean μ and our estimate x̄ . But this is just
the sampling distribution variance for the mean, which we saw above is σ 2/N . So
now we can see that

E[s2] = σ 2 − σ 2

N
= N − 1

N
σ 2.

In other words, the sample variance is on average smaller than the true variance by
a factor (N − 1)/N . If we want an unbiased estimate of the variance, we should
therefore use

σ̂ 2 = s2un = 1

N − 1

∑
(xi − x̄)2. (8.2)

For small samples, the difference is quite substantial. For our N = 6 example in
Sect. 8.2, the standard sample variance gives s = 15.26, but the unbiased estimate is
sun = 18.31. For large N of course there is little difference. Both the standard sample
variance and the unbiased version tend towards the true value σ as N increases.

8.3.2 Error on Mean from Sampling Distribution

What is the uncertainty on our estimate μ̂ = x̄? One possible answer comes from
doing the following thought experiment. Suppose we hypothesise that the underlying
population has truemeanμ and variance σ .We imagine doing an experiment, getting
N data values xi , and using these to calculate μ̂. We then imagine repeating this
experiment many times and getting many different values of μ̂. These values will
have some probability distribution p(μ̂|μ), which we call the sampling distribution
for μ̂.

The standard deviation of the estimator sampling distribution, σμ, can be used
as the uncertainty on our estimate.1 You might think that to calculate σμ we have
to imagine many repeats of our experiment with N samples. In fact, it is simpler
to think of splitting our sample into N groups of 1. Each data point gives us a
separate estimate of the mean, with error σ . Let us first suppose that we know
the value of σ , as would be the case if this is a known experimental error. We
can then use our standard error propagation formulae to see the effect of adding
many variables. (This assumes that the points are independent.) If f = ax + by then
σ 2
f = a2σ 2

x + b2σ 2
y so with μ̂ = ∑

xi/N and all the xi having the same σi = σ , we
get σ 2

μ = ∑
σ 2
i /N 2 = Nσ 2/N 2 and so

1Keep a mental distinction between σ , s, and σμ. Generally σ refers to the point-to-point dispersion
in the parent population; s refers to the point-to-point dispersion in the observed sample of N points;
and σμ refers to the sample-to-sample dispersion you would get from repeating the experiment.
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σ 2
μ = σ 2

N
. (8.3)

So reassuringly, the larger our sample, the more accurate is our estimate of μ. Using
once again our example from Sect. 8.2 with N = 6 points, if we know the experi-
mental error to be, say, σ = 16, then σμ = 16/

√
6 = 6.53, and we can say that our

estimate of the mean is 252.83 ± 6.53. Suppose on the other hand we don’t know
the value of σ ; should we use our sample-variance estimate? This needs a little more
careful thought, as described in the next two sub-sections.

8.3.3 Confidence Intervals for the Mean: Known σ Case

The idea of a sampling distribution allows us to construct any confidence-range we
wish for μ, using the significance-testing techniques of Chap.7. If we propose a
particular value of μ, then we can in principle derive the probability distribution
p(μ̂|μ). Now we compare our actual value x̄ with this distribution. If x̄ is a rare
value, we would reject the hypothesisedμ value. Finally, we imagine varyingμ until
we find critical values μmin and μmax, such that values outside that range would be
rejected based on our data point x̄ , at our chosen confidence level.

How this works depends on whether we know σ or not. If all the data points are
drawn from the same distribution with known σ , then p(μ̂|μ) will be a Gaussian
with mean μ and variance σ 2

μ. We can then use the sample mean z-statistic from
Sect. 7.10.3:

z = μ − μ̂

σ/
√
N

, (8.4)

which has a standard Gaussian distribution with μz = 0 and σz = 1. By finding
appropriate critical values of z, we can then set any desired confidence interval. If we
want say 90% confidence, and are doing a two-tailed test, thenwe include values with
|z| < 1.64. Using our example from Sect. 8.2, with N = 6, μ̂ = 252.83, σμ = 6.53,
then for the 90% range we want 252.83 ± 1.64 × 6.53 = 252.83 ± 10.71.

8.3.4 Confidence Intervals for the Mean: Unknown σ Case

Now suppose we don’t know the error on each of our N estimates.We can proceed by
estimating μ̂ = x̄ as before, but using the sample standard deviation σ̂ = s. Instead
of z we then use the t-statistic:
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t = μ − μ̂

s/
√
N

. (8.5)

However, this statistic does not follow a normal distribution, essentially because, as
we saw in Sect. 8.3.1, s is a biased estimate of the variance. The t statistic can be
shown to follow the PDF

fν(t) = Γ [(ν + 1)/2]
(πν)1/2Γ (ν/2)

[
1 + t2

ν

]−(ν+1)/2

.

where the degrees of freedom is ν = N − 1. Like χ2 this is a family of curves for
different values of ν, with mean 0 and variance ν/(ν − 2). The formula is rather
ugly, but just as with z and χ2, standard tables and computer routines make it easy to
look up any given level of confidence. For large ν the t-distribution becomes close
to the standard normal, i.e. with μ = 0 and σ = 1, but for small ν it is significantly
different. It gives a more accurate test for whether a sample is consistent with a
proposed mean, and therefore also a better confidence interval for μ.

Returning once again to our example data set of N = 6 numbers from Sect. 8.2,
we have μ̂ = 252.83 and s = 15.26. The number of degrees of freedom is ν = N −
1 = 5. Looking up a standard t-table for ν = 5 we find that to get 90% confidence
we want |t | < 2.02. Our desired confidence interval is therefore 252.83 ± 2.02 ×
15.26/

√
6 = 252.83 ± 12.58, a little larger than the known-error case. This makes

intuitive sense—if we are using the data to estimate two things rather than just one,
each of them will be more uncertain.

8.4 Maximum Likelihood Estimates

In the simple case we have discussed above, estimating the mean and variance of a
normally distributed population, the natural estimator is fairly obvious, but what do
we do in more subtle or complicated cases? If we have a range of different possible
values for a parameter θ , we can calculate the likelihood function L(θ). Here we are
are using L(θ) as shorthand for L(D|θ), i.e. the probability of the dataset D given
the hypothesis with a specific θ value, but holding D fixed and varying the parameter
value θ . A reasonable suggestion is that the “best” value of θ is the one that makes the
dataset we have observedmost probable—i.e. thatmaximises the likelihood function.

We can use this idea in two ways. (i) In some cases we may be able to solve
for the maximum analytically. Below we will look at one of the most important
examples—finding the maximum likelihood estimates of the mean and variance of
a dataset with Gaussian errors. (ii) More often, there is no analytic solution and so
we find the maximum numerically or graphically. The techniques for doing that are
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just the same as when we calculate “maximum posterior”, so we will put off looking
at the numerical technique until Sect. 8.5.

So first, lets see how the maximum likelihood method works by repeating the
same example as in the previous section—estimating mean and variance.

8.4.1 Maximum Likelihood Solution for Mean and Variance

Suppose we have N data points xi all drawn from a Gaussian with the sameμ and σ .
We can think of μ and σ as variables, and then ask what values will jointly give us
the maximum likelihood for our dataset. The likelihood density for a specific value
xi is

Li (μ, σ ) = 1

σ
√
2π

exp

[
−1

2

(
xi − μ

σ

)2
]

.

The probability of obtaining all N values is then

L(μ, σ ) = ∏N
i=1 Li (μ) =

(
1

σ
√
2π

)N
exp

[
− 1

2

∑
i

( xi−μ

σ

)2]

and so log L = − 1
2N log 2πσ 2 − 1

2σ 2

∑
i (xi − μ)2.

We wish to find the overall minimum as we vary μ and σ 2, and so we need to find
both ∂log L/dμ = 0 and ∂log L/dσ 2 = 0. The first of these simultaneous equations
gives

∂log L

dμ
= 0 =

∑
(xi − μ)

σ 2
,

but here we are treating σ as constant, and assuming σ 2 �= 0 and so we get

∑
xi − Nμ = 0 and so μ̂ = μML =

∑
xi

N
,

where we have written μML to emphasise that this value is our ML estimate of μ.
So the ML estimate of the population mean is just the same as the sample mean x̄ .
Substituting this value into the second of our simultaneous equations we get

∂log L

dσ 2
= 0 = −N

2σ 2
+

∑
(xi − μ̂)2

2σ 4
and so σ̂ 2 = s2ML =

∑ (
xi − μ̂

)2

N
.

So the ML estimate of variance is just the sample variance. However, as we saw
earlier, this is a biased estimate. It can be shown that in general ML estimators give
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the minimum variance, i.e. the smallest error, but they are not always unbiased. Here
we have a useful example of the recurring lesson that in statistics there is rarely a
unique answer to the question “which method is best?”.

8.4.2 Weighted Mean Estimate

With the concept ofmaximum likelihood,we can address the third variation described
in Sect. 8.2—the case where each measurement xi has a different error σi . The σi

values are assumed known and so can be considered fixed; we just want to vary μ

and see what value gives us the maximum likelihood. The joint likelihood is

(
1√
2π

)N ∏

i

(
1

σi

)
e
− 1

2

∑ (
xi−μ

σi

)2

.

The first two terms are constant with respect to μ. Maximising the third term is
equivalent to minimising whats inside the exponential

K = −1

2

∑ (
xi − μ

σi

)2

.

Differentiating, we get

dK

dμ
= 0 =

∑ (
xi − μ

σ 2
i

)
=

∑ xi
σ 2
i

− μ
∑ 1

σ 2
i

,

and so finally we find our weighted estimate for μ

μ̂weighted =
∑

xi/σ 2
i∑

1/σ 2
i

. (8.6)

What is the uncertainty on our weighted mean estimate? We can repeat the trick we
used in Sect. 8.3, considering our sample of N to be N samples of 1. Sample-1 has
error σ1, Sample-2 has error σ2 etc. Using our standard error propagation formulae,
you can see fairly easily that the net error on our estimate μ̂ is

σ 2
μ = 1

∑ (
1/σ 2

i

) . (8.7)

Using the weighted mean as opposed to the normal mean can make a big differ-
ence. Suppose we measure the mass of a particle twice, with the first measurement
being more accurate than the second. The first time we get 252 ± 3 and the second
time we get 274 ± 14. The standard mean would give us 263.0, which is discrepant
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with the first measurement by more than 3σ . The weighted mean on the other hand
gives 252.97, which is nicely consistent with the better measurement, but not quite
the same. The poor measurement still adds some information, but not as much as the
good measurement.

8.4.3 Discarding Dodgy Data Points: Sigma Clipping

In the example use of weighted mean above, we assumed that although some data
points have bigger errors than others, they are all fair estimates of the true mean. The
correct approach is therefore to include all the information, but in a weightedmanner.

However, in real life some measurements are simply wrong, or biased for some
reason, and could bias our estimate. These incorrect measurements might stand out
as being individually discrepant from the mean, given their error. Can we spot these
and remove them? As ever in statistics, there is no iron-clad solution, but a rea-
sonable procedure known as “sigma-clipping” is often followed. First, you decide a
reasonable deviation at which to exclude points—typically those above/below ±3σ ,
which would exclude only 0.4% of non-bogus points. Next, you estimate μ � x̄ and
σ � sML from all the points in the sample, and use this to find the deviant points.
You discard the deviant points and re-calculate x̄ and sML; then repeat until there are
no deviant points.

8.5 Maximum Posterior Estimates

The maximum likelihood technique takes no account of our existing knowledge or
judgement. If we combine the likelihood of the data with the prior probability of
a hypothesis, we can, just as in the previous chapter, put these together to find the
posterior probability for our hypothesis. However, we now have a continuous range
of hypotheses corresponding to trial values of our parameter θ . Correspondingly, we
have to assign a continuous prior probability density distribution π(θ). The marginal
likelihood comes as usual from summing over all the possible hypotheses, and the
updated posterior probability density2 is given by Bayes’s formula at each θ value

P(θ) = π(θ)
L(θ)

E
where E =

∫ +∞

−∞
L(θ)π(θ)dθ. (8.8)

Note that if we were to choose a constant value for π(θ), and then look for the
maximum of P(θ), this would be exactly equivalent to the maximum likelihood
solution, and like the MLmethod, there are analytic solutions for some simple cases.

2Note that for a continuous parameter both π(θ) and P(θ) will be densities with respect to θ ; on
the other hand L(θ) is not a density with respect to θ—it is a just function of θ , but may be a density
with respect to the data.
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More often however, the posterior method is implemented numerically.Wewill work
through a simple example in Sect. 8.5.4.

A common problem is that calculating the normalisation factor E may be compu-
tationally expensive—in principle we have to perform the calculation over an infinite
range of θ , and the integral may converge only slowly. This problem is much worse
for the multi-parameter model fitting we will discuss in Chap.10. However, if all we
want is to numerically locate the maximum of P , we can just work with the relative
values

P ′(θ) = EP(θ) = L(θ)π(θ).

In Sect. 8.5.2 we discuss how to recover the normalisation using a Gaussian
approximation. However, to proceed we first need to choose a prior.

8.5.1 Choosing a Prior

From the physical situation in question, a sensible prior will often suggest itself. For
example, suppose we are measuring particle velocities in a gas and wish to estimate
the temperature T of the gas.Wewill probably know roughly what the temperature is
already, butwant amore accurate estimate from themeasured velocities. The simplest
thing would be to limit T to some range Tmin to Tmax, and set π(T ) to be uniform over
that range. For the prior to be properly normalised,we needπ(T ) = 1/(Tmax − Tmin).
Note that we cannot make π uniform over all values of T because this would make
the marginal likelihood infinite, or equivalently would make the prior probability
density zero everywhere. Limiting allowed values of T to some range is a simple
and practical solution.

Wemight feel uncomfortable howeverwith a hard rule that T cannot be outside this
range. A better approachmight be allow larger or smaller values to become gradually
more improbable. A popular and reasonable approach is to allocate a Gaussian shape
to π(T ), i.e. with a mean value set to a starting guess T1, and a standard deviation
σT chosen to give a range that we feel might include the right value a majority of
the time. Another popular choice is to set π(T ) to be uniform in log T rather than
uniform in T . You will hear this referred to sometimes as “the Jeffreys prior”.

8.5.2 Gaussian Approximation to P(θ)

In principle we could calculate P(θ), or the relative values P ′(θ) = π(θ)L(θ), over a
fine grid of θ values and numerically locate the maximum. However, we could locate
the maximum much more cheaply if we interpolate between our grid values with
some smooth function, in which case we need only a handful of points straddling
the peak. A common practice is to assume that P(θ) has a Gaussian shape. This
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is quite well justified whenever the likelihood, and hence the posterior probability,
involves a large number of independent data points. To locate the peak, we need only
to calculate P(θ) at three values of θ and then solve for the Gaussian parameters
which fit those data points. This is easy to see because whenever P is Gaussian, then
log P is a parabola. Suppose we have

P(θ) = 1

σθ

√
2π

exp−1

2

(
θ − θ0

σθ

)2

.

where θ0 and σ 2
θ are the mean and variance of our assumed Gaussian probability

distribution P(θ). In fact we can just workwith the relative values P ′(θ) = EP(θ) =
L(θ)π(θ). Taking logs, we find

y(θ) = log P ′ = A − 1

2

(
θ − θ0

σθ

)2

where A = log

(
E

σθ

√
2π

)
.

The quantity y = log P ′ is therefore a quadratic in θ with three parameters A, θ0, σθ .
Let us suppose that we have three evenly spaced θ values at θ1, θ2 = θ1 + Δθ, θ3 =
θ1 + 2Δθ , for which we find values y1, y2, y3. Then after some simple but very
tedious algebra we can find that

θ0 = θ3 − Δθ

[
y3 − y2

y1 − 2y2 + y3
+ 1

2

]
. (8.9)

We therefore have a location of the best value of θ to arbitrary accuracy by calculating
the posterior at just three test values. A little bit more algebra also gives us the error
on our best estimate, and the normalisation factor E

σθ = Δθ

√
(2y2 − y1 − y3)

−1, (8.10)

log(E) = y(θ0) − log(σθ

√
2π). (8.11)

The assumptionof aGaussian formgives us another popular quickway to calculate
σθ—the curvature method. Using the parabolic form in (8.9), differentiating twice
will show that d2y/dθ2 = −1/σθ and so we have

σθ = −
(
d2 log P

dθ2

)−1

. (8.12)

A rough estimate of the error can therefore be obtained by double-differencing three
neighbouring points.



148 8 Parameter Estimation

8.5.3 Constructing Posterior Probability Intervals

If we have a normalised P(θ), then we can construct an interval θ1 to θ2 such that
the integrated posterior

Pint =
∫ θ2

θ1

P(θ)dθ.

contains the desired total amount of probability—0.68, 0.9, 0.95, or whatever. If
P(θ) is symmetrical, the usual method is to take θ1 and θ2 an equal distance from
the mode. For an asymmetric probability density function, there is no unique choice
of θ1 and θ2, so one has to be carefully explicit about how the choice was made.

There are three ways we might achieve normalised P values. First, if we are
lucky we might have an analytic solution for P(θ)—but this really is quite rare. The
second way is what one might call the brute-force numerical method. We start by
calculating P ′(θ) = π(θ)L(θ), and then get an approximate normalising factor by
numerical integration over some range θmin to θmax:

Eapprox =
∫ θmax

θmin

P ′(θ)dθ.

A typical procedure might be to gradually extend the upper/lower limits until our
estimated value Eapprox changes from the previous value by less than some pre-
decided amount, such as say 1%.

The third way to achieve normalised values is to assume the Gaussian approxi-
mation of Sect. 8.5.2 and extrapolate, using standard Gaussian integral probability
regions. For example, if wewant to contain 95% of the probability, the range wewant
is θ1 = θ0 − 1.96σθ to θ2 = θ0 + 1.96σθ . Furthermore, we don’t need to calculate
the marginal likelihood E by laborious integration; on the assumption of a Gaussian
form, we can solve for E from our three points as described in the previous section.

How reliable is the Gaussian approximation method? There is no black and white
answer to this. The more data points there are the better it will be. A rule of thumb
would be that 10–20 or more independent data points makes it fairly reliable. How-
ever, it should be borne in mind that any discrepancy between the real P(θ) and the
Gaussian approximation will be in the far wings of the function. If you are happy
with a 68% interval, i.e. the equivalent of ±1σ , then it will usually be very good.
However, if you are looking for a 99% interval, your limits could be badly underes-
timated. In Chap.10, when we look at multi-dimensional model fitting, we find that
the Gaussian approximation in the tails of P(θ) becomes far less reliable.

8.5.4 Maximum Posterior Worked Example

Let’s use the same simple example dataset of Sect. 8.2. Suppose then we have
six measurements of the mass m of a particle, with the data values being xi =
256, 239, 237, 278, 266, 241, and the error being σx = 16. We imagine many
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Fig. 8.1 Illustration of the use of Bayesian credibilitymethods to estimate a parameter, as described
in the text. Top left: Six data points xi compared to three different trial values of the parameter
m. Note that the horizontal axis doesn’t have a physical meaning; its just the index number for
each of the six values. Top right and bottom left: Comparing the prior distribution π(m), the joint
data likelihood L(m), and the resulting posterior P(m), for two different priors. Note that both
the prior and the posterior are normalised credibility density distributions, so that the y-axis units
would depend on the units of m, but both curves integrate to 1.0. The joint likelihood is actually a
very small number; an arbitrary scale factor has been applied in order to make a visual comparison
with the other distributions. Bottom right: Ilustrating how to derive an uncertainty interval of 90%,
based on the cumulative posterior distribution, derived using the first of the two priors

different possible values ofm; for each hypothesised value, we can consider each data
value to be drawn from a Gaussian distribution with mean m and standard deviation
σ = 16. Figure8.1, top-left, illustrates our six data values, compared to three differ-
ent trial values of m. By eye its clear that m = 262 looks reasonable and m = 239
and m = 272 less so.

At a given value of m we can calculate the likelihood of each data value, which
is given by the Gaussian probability density. For example, for m = 239, the value
x1 = 256 ± 16 gives L1 = 0.0142. The joint likelihood of the whole dataset is L =
L1 × L2... × L6 = 1.6607 × 10−12. Note that such joint likelihoods are often very
small numbers,whichneeds somenumerical care.Repeating the exercise for different
values of m gives us L(m), as illustrated in Fig. 8.1, top right.
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Next we need to assign a prior probability density distribution π(m). In a real-
world example, thiswould be basedon somephysical judgement, or theoretical guess.
As an illustration, we try two different priors, each of which has a Gaussian shape. In
Fig. 8.1, top right, the prior has mean m = 252, and is quite broad, with σ = 50. In
Fig. 8.1, bottom left, the prior is centered atm = 290, and is somewhat narrower, with
σ = 20. We then combine our priors with L(m) to get the un-normalised posterior
P ′(m) = L(m)π(m). With this simple example, numerical integration is quite easy.
For the first prior, we get E = 2.0256 × 10−12. We can then make the normalised
posterior P(θ) = EP ′(θ).

The results are shown in Fig. 8.1, top right and bottom left. For the first prior, P(m)

is not much different from L(m), apart from a normalisation factor. The best value is
at the maximum of P(m), which we find at m = 253.0. For the second prior, P(m)

is a kind of compromise between the prior and the likelihood. This is instinctively
reasonable; our final conclusion involves both what our initial judgement told us, and
what the data says. Does the choice of prior make a big difference to the final results?
It always makes some difference, but howmuch depends on both the prior concerned
and the data. If the information we have is such that the parameter is already fairly
well constrained, then the precise prior may make little difference; over the range of
interest, the behaviour of the prior may be close to flat for any reasonable choice of
shape. Likewise, if the dataset is highly constraining, the choice of prior is not too
important. Overall, the issue iswhich of L(θ) andπ(θ) is changing fasterwith respect
to θ . If L(θ) is dropping fast over a small range of θ then different choices of π(θ)

will make little practical difference. However, note the converse—in cases where the
data input is relatively modest, the choice of prior can make a big difference. People
who don’t like Bayesian methods see this as a weakness; fans of Bayesian methods
see this same issue as precisely their strength—scientific judgement is required, and
it makes a quantitative difference.

Next, let us examine how to construct an uncertainty interval. One way to do this
is by using the cumulative posterior

Pcum(<θ) =
∫ θ

−∞
P(θ ′)dθ ′.

where of course in practice we start the integration at some suitably small θmin.
Depending on the physical meaning of the parameter in question, sometimes of
course we may integrate from θ = 0 and so on. The result in our case is shown in
Fig. 8.1, bottom right. Suppose we want an interval to contain 90% of the probability
for m. Then we simply read off where Pcum = 0.05 and 0.95, giving a range of
241.91–263.23.

Finally, lets take a look at the three-point Gaussian solution. We can calculate our
prior and our likelihood at say m = 249.0, 253.0, 257.0, i.e. with Δm = 4.0, giving
P(m) = 0.05176, 0.06157, 0.05001 respectively. Taking logs and using equation
(8.9), we find m0 = 252.82 and σm = 6.48. For this simple example, the Gaussian
approximation method gives the same answer as the full P(m)method—but it ought
to, becausewe have assumed that all our data points are drawn from a singleGaussian
distribution. Note however, its computational efficiency.
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8.6 χ2 Parameter Estimation

In Chap.7 we looked at how we can test either the relative believability of a set of
hypotheses using priors and likelihood, or test our absolute confidence in a single
hypothesis using a test statistic, the most popular example of which is the χ2 statistic
of Sect. 7.11, whichmeasures the scatter of data values compared to what the hypoth-
esis would suggest. If we have a tuneable parameter θ , we can do a χ2 significance
test for each value of θ in turn, and construct the function χ2(θ). Then, just as we can
search for the θ value that maximises likelihood or maximises posterior probability,
we can search for the value that minimises the value of χ2. This is an extremely
popular and widespread technique, and dominates much of the statistical testing
used in the scientific literature, although Bayesian methods are slowly increasing in
popularity.

8.6.1 Relation Between χ2 and Likelihood

For normally distributed data points, the minimum χ2 and maximum likelihood
methods are essentially the same. Suppose we have N data values xi and we believe
that these are drawn from a parent population with mean μ and dispersion σ . Then
we have

χ2 = 1

σ 2

∑
(xi − μ)2,

Recall that in Sect. 8.4 we looked at the joint likelihood of N normally distributed
data points, and then took logs, finding that

log L = −1

2
N log 2πσ 2 − 1

2σ 2

∑

i

(xi − μ)2,

We can see that the last term is just half of χ2, and so we have

log L = −1

2
N log 2πσ 2 − χ2/2. (8.13)

This relation is generally true with respect to any dataset with normally distributed
errors—minimising χ2 is the same as maximising log L .3 The idea of maximum
likelihood is more general, and can be applied in other cases; however a huge amount
of literature on practical techniques is couched in terms of minimising χ2.

3Sometimes you see people using “negative log likelihood” as a test statistic.
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8.6.2 Finding Minimum χ2

Just as with the maximum posterior method, there may occasionally be an analytic
solution, but more often we will need to calculate χ2(θ), and find its minimum,
numerically.

To locate the minimum of χ2, we can use the same Gaussian/parabolic method
as we used for locating the maximum posterior (Sect. 8.5.2). Note that because χ2 is
essentially the log of likelihood, if the likelihood function is Gaussian, then χ2(θ)

will be a parabola. By analogy with the posterior probability case, we can see that
the minimum χ2 is located at

θ0 = θ3 − Δθ

[
χ2
3 − χ2

2

χ2
1 − 2χ2

2 + χ2
3

+ 1

2

]
. (8.14)

8.6.3 Goodness of Fit

The main advantage of the χ2 method is that it gives a way to quantify the absolute
goodness of fit of our hypothesis. Once we have located the value θ0 that gives us
the minimum value of χ2 = χ2

min over a tested range of θ values, we can ask “now
we have found that best hypothesis, if it is correct, what is the probability of getting
a value of χ2

min or worse?”. However, as noted in Sect. 7.11.2, because we have used
the data to find the best-fit value, the degrees of freedom we use in interpreting χ2

is ν = N − 1 rather than N .
This ability to reject even the best value can be important because every hypothesis

has a broader context. Suppose some theorist says “I propose there is a new particle.
You will be able to see the effect of this particle if you make such-and-such mea-
surements. I don’t know what the massm is, but my theory predicts what you should
see depending on the mass.” We could then make the measurements, and compute
the likelihood of our observed data points, for each of a range of m values. We could
get our “best” value of m from maximum likelihood, from maximum posterior, or
from minimum χ2. The good Bayesian at this point might say “I can tell you how
believable different values of m are, but you should know that if the theory about the
new particle isn’t true anyway, then none of this means anything.” However from
the χ2 test, we might end up saying “Well this value of m is the best of a bad bunch,
but actually even for that best value, there is a low probability of getting the data we
saw, so the whole idea might be nonsense.”

8.6.4 Confidence Intervals Based on χ2 and �χ2

Once we have calculated the function χ2(θ), and have located its minimum at some
value θ = θ0, how do we find an uncertainty interval? Because χ2 tests the signifi-
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cance of a result, what we can hope to get is a confidence interval. There are three
ways of going about this.

The first way is to calculate an acceptance interval. Any given value of θ can be
seen as an independent hypothesis, and based on the value of χ2(θ)we can accept or
reject that hypothesis, using our chosen confidence level. Note that because we are
considering a fixed hypothesis, the number of degrees of freedom is ν = N where
N is the number of data points. We can then divide all the possible points into an
acceptance class and a rejection class. The critical values of θ where we switch from
acceptance to rejection define an acceptance interval.

The second way is to estimate a Gaussian likelihood interval. For a reasonable
number of data points the likelihood functionwill beGaussian, and because of (8.13),
the function χ2(θ) will be a parabola. As well as allowing us to estimate the best
value of θ as in Sect. 8.6.2, we can also use the “curvature method” of Sect. 8.5.2 to
get the width of the function, giving us

σθ = −1

2

(
d2χ2

dθ2

)−1

. (8.15)

The third way to get a confidence interval is to use the Δχ2 method. This is
related to the simple acceptance test method, but is more sensitive, using a new test
statistic, Δχ2. To explain this, we first need a useful mathematical result. If we have
a χ2 variable χ2

n with ν = n degrees of freedom and a second variable χ2
m with

ν = m degrees of freedom, then it can be shown that the difference between the
two variables, Δχ2 = χ2

n − χ2
m , is also distributed as χ2, but with n − m degrees of

freedom. This is not too hard to prove, but we won’t do so here. Lets look at how we
use this theorem. The trick is to look at the change in χ2 either side of the minimum.
The probability distribution for the value of χ2

min will be given by χ2 with N − 1
degrees of freedom, because we have determined our parameter θ from the data.
Suppose nowwe try out a value of θ to one side of the minimum, and find a value χ2

θ .
This will be distributed as χ2 with N degrees of freedom—each trial value of θ is
fixed before the calculation. So the difference between this and the minimum value,
Δχ2(θ) = χ2

θ − χ2
min will be distributed as χ2 with one degree of freedom. Then as

above, we can choose a significance level α, and accept or reject each value of θ by
testing whether the value of Δχ2 has a probability less than α. This will construct
the Δχ2 confidence interval for θ .

The beauty of this method is that the required critical values of Δχ2 are always
the same. Looking up values of χ2

1 in a standard table, we find that 68.3%, 90%, 95%
and 99% confidence requires Δχ2 < 1.0, 2.71, 3.84, 6.63 respectively.

8.6.5 Minimum χ2 Worked Example

Let us once again use the simple example of Sect. 8.2—six data values xi =
256, 239, 237, 278, 266, 241, all with error σ = 16, which are estimates of the mass
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Fig. 8.2 Track of χ2 versus
parameter value m for the
example data described in
the text, together with two
different 90% uncertainty
intervals. The upper range is
the acceptance interval,
based on the critical value
where P(χ2 > χ2

crit) = 0.1
for ν = 5. The lower value is
the Δχ2 confidence interval,
based on the critical value of
χ2 with ν = 1

m of a particle. Figure8.2 shows the result of calculating χ2 for a range of values
of m. The minimum can be located graphically to be at m = 252.8, where we find
χ2
min = 5.47. The value of χ2

min should be distributed as χ2 with ν = N − 1 = 5
degrees of freedom. From standard tables, we find P(>2

min) = 0.36, which shows
that the hypothesis that all the data points are drawn from a single mean is acceptable.

From standard tables, we can also find P(>χ2) = 0.1 at χ2 = 10.64. The points
where our χ2(θ) curve intersect that value therefore gives us the 90% acceptance
range, which gives usμ = 251.9 ± 14.9, as illustrated in Fig. 8.2. On the other hand,
if we use the Δχ2 statistic, to get 90% confidence, we need to go to χ2

min + 2.71 =
8.18. Seeing where the curve hits that level, we find our 90% confidence range to be
μ = 251.9 ± 10.7, which is closely similar to the the posterior probability interval
for the case where the prior is broad.

The interval we get from Δχ2 also agrees closely with the result we get if we
use the curvature method to get σθ , and extrapolate to 90% confidence assuming that
this represents the standard deviation of a Gaussian distribution. For many practical
purposes, the curvature andΔχ2 methods agreewell, but the agreementwill typically
worsen as we go out into the wings of χ2(θ), i.e. if we want 95 or 99% confidence.

8.7 Key Concepts

Some of the key concepts from this chapter are:

• The idea of a parameter as representing a family of hypotheses
• How to get the error on an estimate from its sampling distribution
• The fact that the sample variance is a biased estimator of the population variance,
and how to calculate an alternative unbiased estimate

• The use of the z-statistic for cases where σ is known in advance
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• The use of the t-statistic for cases where σ is estimated from the data
• The idea of usingmaximum likelihood as a general technique for finding parameter
estimates

• Maximum likelihood estimates for mean and variance, including the weighted-
mean estimate

• The idea of using maximum posterior as a general technique for finding parameter
estimates

• Techniques for getting maximum posterior estimates for parameters, including
choice of prior, numerical techniques and the Gaussian approximation

• Techniques for constructing posterior uncertainty intervals
• The use of minimum χ2 as a general technique for finding parameter estimates
• How to assess goodness of fit from minimum χ2

• The use of Δχ2 to construct confidence intervals.

The key formulae from this chapter are: standard sample mean and variance esti-
mators (8.1), and the error on the sample mean (8.3); the unbiased estimator for
sample variance (8.2); definitions of the z and t statistics for constructing uncer-
tainty intervals on the mean ((8.4), (8.5)); the maximum likelihood formulae for the
weighted mean and its error ((8.6), (8.7)); the formula for constructing a posterior
function, given a prior (8.8); the formulae for estimatingmaximumposterior, its error,
and the posterior normalisation ((8.9), (8.10), (8.11)); the curvature formula for get-
ting the error on a maximum posterior estimate (8.12); the relationship between χ2

and likelihood (8.13); the parabolic approximation formula for getting a minimum
χ2 estimate (8.14); and the curvature formula for getting the error on a χ2 estimate
(8.15).

8.8 Further Reading

Traditional statistics textbooks (see the Chap.1 references) usually have good treat-
ments of parameter estimation using maximum likelihood and χ2 techniques. A
particularly practical guide which is popular with physical scientists is Bevington
and Robinson (2002); as well as sound explanations, it also has many useful tables,
and examples of computer code. As with hypothesis testing, Bayesian methods are
becoming increasingly popular. You will find good simple treatments in Sivia and
Skilling (2006) and in Stone (2013).

The t statistic we discuss in Sect. 8.3.4 is often known as “Student’s t”. This
name is nothing to do with its use by students. The t-distribution was put forward
in a paper in the journal Biometrika signed only with the name “Student”. (Student
1908). This was a pseudonym used by William Sealy Gosset. He worked for the
Guiness brewery, who did not allow their scientists to publish and risk breaching
trade secrets; publishing under a pseudonym was the compromise Gosset came to
with his employers. The story is nicely told in the Wikpedia page on Gosset.
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8.9 Exercises

8.1 I recentlymeasured the brightness of a star three times and got 225 ± 6, 218 ± 9,
and 286 ± 36. (The units don’t matter!) If I didn’t have the errors, but only the
brightnesses, what would I get for the estimated mean? With the errors known, what
is the weighted mean and error? Calculate a 95% confidence range for the mean.
Does it include the simple unweighted mean? Finally, how does our 95% confidence
region compare to the 95% acceptance region?

8.2 How many data points do you need for the sample standard deviation to be the
same as the unbiased standard deviation estimate, to within 5% or better?

8.3 A particle physics experiment has made five measurements of the mass of the
Yotta particle, which gave m =83.6, 92.9, 77.3, 88.4, and 89.5GeV respectively.
From these measurements, estimate the sample mean, sample variance, and error on
themean. The standard theory predictsms = 91.93GeV. Is this value consistent with
the data at 95% confidence? Assume that the data points are normally distributed
with mean ms and variance σ 2. First, compare the prediction and the data using the
standard z-statistic, using the sample variance as an estimate of σ . Then compare
them using the t-statistic. How much difference does this make? Construct a 95%
confidence interval for m using the t-statistic.

8.4 Show that for ν = 1 the t-distribution is the same as the Cauchy distribution.
(This will need some external mathematical investigation)

8.5 A radiation counter records a series of radioactive decays. The data saved is a set
of N numbers ti where ti is the time between each event and the next one. Assuming
the data follow the usual exponential (waiting time) distribution, derive a formula
for the maximum likelihood estimate of the rate λ.

8.6 Show that the formula for the unweighted mean reduces to the usual formula
for the mean if all the errors are the same.

8.7 (a) A coin is being tested for bias. This is quantified by p, the probability of
landing heads up on any single coin toss. The test is to toss the coin n times and
record the number of heads r . An initial test has 4 tosses and scores 3 heads. On this
basis, what is the “natural” estimate of p? If the number of heads does indeed follow
a binomial distribution with this value of p, what is the expected dispersion in r , σr?
Use this to get an estimate of the error on our estimate of p, σp.

(b) The observation is 3 heads out of 4.Write down an expression for the likelihood
of the data as a function of p. Assuming a uniform prior for p, calculate themaximum
posterior estimate for p. Calculate the Full Width Half Maximum (FWHM) for p.
By assuming the posterior function is roughly Gaussian, estimate an error σp. Do
these estimates for p and σp agree with those from part (a) above?

(c) Supposewe use a prior function for p that ismoreweighted towards themiddle,
as seems instinctively reasonable. A good choice might be π(p) = 6(p − p2). You
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can confirm that this is centred on p = 0.5 and is well behaved in that it goes to
zero at p = 0 and p = 1, and sums to 1.0. Using this prior, re-estimate p. Is it very
different from the simple estimate?

(d) A fuller test makes 100 tosses and find 65 heads. For 100 tosses the Gaussian
will be a very good approximation to the binomial. Use this approximation, and
assume a uniform prior, to find a 95% posterior probability region for p.

8.8 A theoretical model involves a parameter Q. The theory predicts the outcome
of some experiment which measures a quantity k. A number of measurements of
k are made. Theorists have argued that the correct answer should be Q ∼ 17. The
experimenters therefore calculate the likelihood of the complete set of measured k
values for trial values of Q = 16, 0, 17.0, 18.0. Applying a simple flat prior, they
find (unscaled) relative posterior values of P = 0.0372, 0.0489, 0.0416 respectively.
Using the Gaussian approximation to the posterior, estimate the value of Q and its
error σQ . If you use the curvature method, what value of σQ does this give?

8.9 Consider N data points, all with the same error σ , assumed to represent a
Gaussian standard deviation. The data points are thought to have a common mean μ,
and you are using the data points to estimate μ. Show that the standard χ2 statistic,
the prior probablility π and the posterior probabiliy P are related by

log P(μ) = const + logπ(μ) − 1

2
χ2(μ)

In approximate terms,whatwould need to be the case for theminimumχ2 estimate
of μ to be close to the same as the maximum posterior estimate?

8.10 It is common to use the Gaussian approximation to the χ2 distribution in
order to construct confidence ranges. If we have N data points and use them to
estimate m parameters, what value of χ2 will correspond to 95% confidence, using
this approximation? How accurate is this approximation for m = 1 and N = 3, 10
and 50?
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Chapter 9
Inference with Two Variables:
Correlation Testing and Line Fitting

9.1 Outline of Content

• The concept of correlation
• Covariance and the correlation coefficient
• Testing for correlation
• Rank correlation tests
• Correlation test pitfalls
• Least squares fitting
• Fitting to a straight line
• Testing the fit
• Curvilinear line fitting
• Arbitrary function fitting

A large part of science concerns looking for, and then trying to understand, causal
relations between observed quantities. This is much harder where random variables
are concerned. For example, take a look at Fig. 9.1. Eachdata point represents a galaxy
where both themass of the “bulge” component of a galaxy, and themass of the central
supermassive black hole it contains, have been estimated. It looks like these things
are connected, which could be important. But the points are rather scattered, and
have large error bars. Are we just being fooled by a chance distribution of points
drawn from some random distribution? Note also that the authors have drawn a line
going through the data, hopefully representing the true relationship between black
hole mass and bulge mass. But is the slope of the line right? How do we decide what
the “best” slope is? And what if a straight line isn’t the right mathematical form?
Can I test the prediction for my favourite theory?

When exploring possible correlations, we nearly always ask the same three ques-
tions. (i) Is it real, or just a fluke? (ii) What is the mathematical relationship between
the variables? (iii) Does theory X get it right?

In the first half of this chapter we concentrate on the first question—is the apparent
correlation real? We then take a simplified look at the second question, by looking
at how to fit straight lines and polynomials to a set of data, using traditional least
squares techniques. Full answers to the second and third questions will need the
techniques of general model fitting, which we will tackle in Chap.10.
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9.2 Bivariate Data Sets and Their Origins

Before we set off, let us look carefully at bivariate datasets and how they come about.
Earlier in the book we have mostly considered samples which are essentially lists of
data points xi which we take to be random drawings from some probability density
function p(x). When visually inspecting the data, we could draw each data point
as a dot on the x-axis line, but more normally we would group them in bins and
plot them as a histogram, for comparison to our expected p(x) curve. In this chapter
we are still dealing with a list of data points, but each point is an xi , yi pair. In the
physical sciences, the usual way to visualise such data is to plot individual points on
the x, y plane, as a “scatterplot”, such as that seen in Fig. 9.1.We could also construct
a two-dimensional histogram, but a scatterplot is more usual, because what we are
exploring is the relation between x and y, rather than how often various x, y values
happen. How do such xi , yi datasets relate to the underlying physical situation? It is
useful to distinguish two different situations.

A: both variables random. Our xi , yi points might be random drawings from
some underlying bivariate PDF, p(x, y). Simulated examples are shown in Fig. 9.4.
Something like this presumably underlies the data in Fig. 9.1, where both black hole
mass and bulge mass have a distribution of values in the population of galaxies.
Similarly, we might for example select people at random from a population, and for
each of them measure both their height and their weight. In such cases both x and y
are random variables. When we test for an underlying correlation between the two
variables (see Sect. 9.5), we normally assume that p(x, y) is a bivariate Gaussian
(see Chap.5, Sect. 5.8.1).

Fig. 9.1 Plot of black hole mass versus galaxy bulge mass, from the study by Magorrian et al.
(1998). The “bulge” of a galaxy is the quasi-spherical component, as opposed to the flat disc
component. The two dashed lines represent illustrate possible relationships—one is a one-to-one
relationship, and the other is a line that one might think agrees with the data better. The vertical lines
with no corresponding filled circles represent upper limits. (The original plot came fromMagorrian
et al. (1998), Astron. J, 115, 2285, and is copyright AAS, used with permission. We have taken data
from Table2 of that paper and re-drawn.)
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B: only one variable random. In this situation, one of the variables, let us say x ,
is not random, but is varied in some controlled manner; then at each chosen x value
we measure y, which is a random variable with some PDF p(y). However, the PDF
for y may be different at each x value, i.e. p(y|x). For example, we might have an
amplifier where we turn a dial to set a voltage, and then at each voltage setting we
measure the output wattage. In such a case, x is known as the independent variable,
and y is the dependent variable. Often, some theory predicts how y should depend
on x , giving ypred(xi ), but the measurement has a random error σ . Then each yi
measurement is a random variable drawn from a PDF that is a Gaussian with mean
ypred and variance σ 2. When we fit lines to data (see Sect. 9.8), this is the situation
we are assuming.

9.3 The Concept of Correlation

Looking at the points in Fig. 9.1, our instinct is that they look like they are proba-
bly “correlated”. What do we mean by this? Lets first try to clarify the concept of
correlation. Then we can discuss how to quantify the concept, and test hypotheses
connected with correlation. Correlation is closely connected with the idea of statis-
tical dependence but is not quite the same. Dependence, which we already met in
Chaps. 1 and 2, is the more general concept, so lets recap that first.

9.3.1 Dependence: Shape Change

Consider the joint probability density function p(x, y). At a given value of x , we
can construct the conditional PDF for y, g(y|x), and similarly we can construct
f (x |y). Graphically, if you think of p(x, y) as a two dimensional surface, then you
can visualise g(y|x) as a vertical slice at position x . Note that in “Situation B”, with
only y being a random variable, we can still consider the distribution g(y|x) at each
x . If the two variables are independent, then the probability of y depends only on
the value of y, and not on the value of x . In terms of our visualisation, the shape of
a vertical slice, g(y), is the same at all x . For “Situation A”, both variables random,
this also means that we can write the joint PDF p(x, y) as the product of two distinct
functions, p(x, y) = f (x)g(y).

Examples of simulated PDFs are shown in Fig. 9.2,with the result of slices through
y at three different x positions shown in the right hand panel in each case.1 In the
top row, the shape of the slice is the same at all three x positions. The normalisation
differs, but not the shapes, as could be confirmed by re-normalising them to match.
The x and y variables are independent. For both the middle row and the bottom row
the y slices have shapes that clearly differ between the three x positions. The x and
y variables are dependent.

1The simulations were all generated from bivariate Gaussan PDFs, but in the bottom row, we have
made the ring shape by subtracting one Gaussian from another.
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Fig. 9.2 Illustrating the difference between dependence and correlation using simulated PDFs,
with the grey scale representing probability density. The top row shows a PDF for independent
variables. Vertical slices at the indicated positions show shapes that are the same apart from a
normalisation factor. The middle row illustrates variables which are both dependent and correlated.
The shapes produced by vertical slices move systematically in y as the x position changes. The
bottom illustrates variables which are dependent but not correlated. The shapes produced by vertical
slices are quite different, but do not shift systematically in y as x changes

9.3.2 Correlation: Systematic Drift

When we say that two variables are correlated we mean that their typical values
are connected—i.e. as we consider steadily larger values of x , the typical value of
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y systematically drifts towards steadily larger values—or if the variables are anti-
correlated, a larger value of x tends tomean a smaller value of y. Looking again at the
examples in Fig. 9.2 we can see that the middle row fits this idea, but the bottom row
does not—there is no systematic tendency for bigger x to mean bigger (or smaller) y.

Note that if two variables are correlated, they are also dependent—but it doesn’t
work the other way round. It is easily possible to be dependent but not correlated, as
the bottom row of Fig. 9.2 shows.

9.4 Quantifying Correlation: Covariance

Above, we have talked about the drift of “typical” values. Can we make this idea
more rigorous? Ideally, wemight like to derive themathematical form of any possible
relationship between y and x . In Sect. 9.8 we shall examine how to do just that. But
before doing anything that clever, it would be good to extract a single number from
our dataset—a test statistic—that we can use to test whether there is any correlation
at all, and if so, which measures the degree of correlation. The traditional way to
quantify correlation is to consider the covariance of the joint distribution. Recapping
the discussion of Chap.2, Sect. 2.4.4, the sample covariance is

sxy =
[
1

N

∑
(xi − x̄)(yi − ȳ)

]
, (9.1)

and the population covariance is

E[(x − μx )(y − μy)] = Cov(x, y) = σxy = lim
N→∞ sxy .

If the variables are independent then

E[(x − μx )(y − μy)] = E(x − μx )E(y − μy),

but each of those terms is zero by definition; so independent variables always have
Cov = 0. This is intuitively reasonable because for any given data point,whether xi −
μx is positive/negative is unconnected with whether yi − μy is positive/negative, so
there are equal numbers of positive and negative terms in the covariance sum. If
the two variables are dependent, then very often, Cov �= 0. However, unfortunately
this isn’t always the case; it is sometimes possible for dependent variables to have
Cov = 0, so covariance is not a safe test of dependence.

However correlated variables always have Cov �= 0. If large values of x tend to
go with large values of y, then when xi − μx is positive/negative, yi − μy will also
tend to be positive/negative. If the variables are anti-correlated, then when xi − μx

is positive/negative, yi − μy will tend to be negative/positive.
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Fig. 9.3 Illustrating the difference between the tightness of correlation, and the steepness/flatness
of correlation. The correlation coefficient measures the tightness, not the strength of effect of one
variable on the other. Each sample is drawn at random from a bivariate Gaussian distribution with
different values of σx , σy, and σxy . The slope is determined by the relative values of σx and σy ,
whereas the scatter in y at a given x is determined by σxy

9.4.1 Correlation Coefficient

Thevalue ofCov seems tobe agood choice to quantify the degree of correlationof two
variables. However, a snag is that covariance carries the units of the measurements
in question, and its absolute size can vary a lot; these two things make it difficult to
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compare one situation with another. For correlation testing we therefore normalise
covariance to the variances of the two variables, to give us the correlation coefficient.
As usual we can define sample and population versions:

r = sxy
sx sy

and ρ = σxy

σxσy
. (9.2)

A handy formulation can be constructed if we write dxi for the i th deviation from
the mean, i.e. dxi = xi − x̄ . Then the 1/N factors cancel out and the correlation
coefficient can be computed as

r =
∑

dxidyi√∑
dx2i

∑
dy2i

.

The correlation coefficient is dimensionless, and easy to compare from one situation
to another. A value of 1.0 is perfect correlation, and 0 is no correlation; intermediate
values show degrees of correlation. Negative values show anti-correlation.

9.4.2 Tightness Versus Sensitivity of Correlation

It is tempting to think of the correlation coefficient as describing the “strength of
correlation”, but unfortunately we could potentially mean two different things by
this term, as illustrated in Fig. 9.3. By “strength” we might mean how sensitive y
is to x—i.e. how big an effect in y is caused by a given change in x . This might
be better described as the sensitivity of the correlation, and has nothing to do with
covariance—it is essentially the slope of the relationship. The correlation coefficient
quantifies how tight the connection between y and x is—the variance in y at a given x .
For some bivariate PDFs, the slope and the tightness can be connected, but in general
theywill not be. Unfortunately the scientific literature often contains references to the
“strength” of a correlation without being clear whether the authors mean sensitivity
or tightness—so read carefully!

9.5 Testing for Correlation

Consider the two datasets shown in Fig. 9.4. The right-hand sample is drawn at ran-
dom from a correlated population (parent) distribution, whereas the left-hand sample
is drawn from an uncorrelated population distribution. The population distributions
are shown in grey-scale. However, if these were not shown, you would not be con-
fident of which sample was which. The data points on the right-hand side could
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Fig. 9.4 Random samples of 20 points drawn from two bivariate PDFs. The parent distribution is
uncorrelated in the left hand case, but in the right hand case has correlation coefficient ρ = 0.75

perhaps just be a lucky drawing from the population distribution of the left-hand
side. But in that case, how likely would we be to get something convincing?

We can approach this question using the sample correlation coefficient r as a
test statistic. If two variables are uncorrelated then the true underlying population
correlation coefficient ρ will be zero. The sample correlation coefficient r is the
estimator for ρ. This will on average be zero, but the calculated value for real specific
datasets will not generally be zero of course. If we want to test the significance of
an apparent correlation, what we need is the sampling distribution of the estimator
r . We can calculate this on the basis of some null hypothesis. The simplest such
hypothesis is that the two variables are drawn from an uncorrelated bivariate normal
distribution, with ρ = 0, like the left hand side of Fig. 9.4. As discussed in Chap.5,
Sect. 5.8.1, this has a PDF given by

p(x, y) = 1

2πσxσy
exp

(
−1

2

[
dx2

σ 2
x

+ dy2

σ 2
y

])
,

where dx and dy are the mean-centered variables. Note that when we estimate ρ

with the sample correlation coefficient r , we do not know the true values of σx , σy

and σxy , but have to estimate them from the data using the sample variances. This
situation is just like that of Sect. 8.34, when we saw how to calculate confidence
intervals for an estimated mean, in the case where we do not know the population
variance in advance, but have to calculate it from the data, using the t-statistic. The
analogous statistic in the 2D case is

t = r

√
N − 2

1 − r2
. (9.3)
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For uncorrelated variables with a bivariate normal distribution, this can be shown to
follow the standard t-distribution with ν = N − 2 degrees of freedom. Given values
of r and N and hence t we can therefore look up the probability of getting a value of
t that large or larger. Usually a two tailed test is appropriate, unless for example we
know in advance that an anti-correlation is not possible. Note that for uncorrelated
variables we expect r = 0; for perfectly correlated variables we expect r = 1, and
for perfectly anti-correlated variables we expect r = −1.

9.5.1 Correlation Test with Fisher’s z

What if we want to test the hypothesis of some non-zero value of r , and/or construct
a confidence interval for r? If ρ is not zero, the PDF that the points follow will still
be a bivariate normal, but it will have a slope, like the right hand side of Fig. 9.4.
However, given a true value ρ and N data points, Fisher showed that the transformed
variate

z = 1

2
ln [(1 + r)/(1 − r)] (9.4)

is approximately normally distributed with mean η = 1
2 ln [(1 + ρ)/(1 − ρ)] and

variance 1/(N − 3). This gives us a way to test values of r by using standard normal
distribution tables.

9.5.2 Bayesian Correlation Testing

Is there a Bayesian equivalent of correlation testing? No and yes. The spirit of
Bayesian methods is not to give yes/no answers, such as “is there a correlation”,
but rather to assess the relative probabilities of a set of hypotheses. However, if we
can calculate the relative probability of different ρ values, we can use this to make
a Bayesian equivalent of the traditional correlation test. To do this, we follow the
methods of Chap.8, and treat ρ as a parameter. First, we propose a prior distribution
π(ρ), for example simply taking it as flat between −1.0 and 1.0. Next, we need the
joint likelihood of the observed set of data points D, given a specific value of ρ. This
is the tricky part, but for now lets assume we have a way to calculate L(D|ρ). Finally
we repeat for different ρ values to get the likelihood distribution L(ρ), and multiply
by the prior π(ρ) to get the posterior probability P(ρ). Finally, we can then ask
whether ρ = 0 is inside or outside a chosen probability region, e.g. a symmetrical
90% region centred on the mean of P(ρ),
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So how do we calculate the likelihood of the data, L(D|ρ)? The simplest thing is
to assume a bivariate normal distribution, with the appropriate degree of correlation.
Because we are assuming a non-zero ρ, we need to get the likelihood of each point
xi , yi from the full blown bivariate PDF, as given in Chap.5, Sect. 5.8.3

Li (xi , yi ) = 1

2πσxσy

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

[
dx2i
σ 2
x

+ dy2i
σ 2
y

− 2ρ
dxi
σx

dyi
σy

])
.

where as usual dxi , dyi are the deviations of the i th data point from the means. We
then multiply all the Li values together to get the total joint likelihood for the whole
data set. In principle, the advantage of the Bayesian method is that we could make
a variety of other assumptions about the underlying bivariate PDF. Conversely, one
has to bear in mind that the probabilities we obtain only make sense in the context
of the underlying data distribution we are assuming.

9.5.3 Rank Correlation Tests

The standard correlation coefficient method relies on the variables x and y being
normally distributed; it also assumes that each point is drawn from the same bivariate
parent distribution, i.e. all data points have the same σx and σy . In principle we could
develop methods for other PDFs, and using data points with individual σi values,
but there is a more general method of dealing with such problems. We take all the xi
values and place them in numerical order, and replace the xi values with their ranks,
Xi = 1, 2, 3 . . . N . We then do the same with y; and then look to see if the ranks
are correlated, i.e. if the top point in X is also near the top in Y etc. We will not
pursue here the theory of one how calculates the distribution functions for statistics
developed this way, but just quote some results. The most popular statistic is the
Spearman rank correlation coefficient

rs = 1 − 6

∑N
i (Xi − Yi )2

N 3 − N
. (9.5)

This statistic has a range from 0 to 1. Just as with r , there exist tables which show how
rs is distributed for the null hypothesis of rs = 0, so that we can perform significance
tests, but we can also calculate a transformed version which follows a standard t-
distribution:

ts = rs

√
N − 2

1 − r2s
. (9.6)
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This follows a t-distribution with ν = N − 2 degrees of freedom, and as usual with
the t-statistic, is close to the Gaussian z-test for a reasonably large number of data
points, N � 30.

Another popular choice is the Kendall rank correlation coefficient, and another
useful technique is the permutation test; we calculate almost any statistic we like,
and then perform many random permutations (which would destroy any correlation)
and see empirically how often our anomalous statistic value comes up.

9.6 Worked Example

For our real world example in Fig. 9.1 it seems fairly clear that the correlation is real,
even though the large scatter makes us uncertain what the true relation is between the
two variables. Let us look at a simple artificial dataset where it is not so intuitively
obvious whether there is a correlation. Consider these five (xi , yi ) data points: (2.1,
9 .6), (2.9, 5.4), (4.1, 17.5), (5.1, 9.8), (5.9, 14.5). They are plotted in the left hand
side of Fig. 9.5, together with the x and y means. The points certainly seem to line
up bottom left to top right. A good rough test is to see how many points lie in each
of the four quadrants defined by the mean-lines. However, with such a small number
of points, this arrangement could perhaps be a fluke?

The legend in Fig. 9.5 shows the sample variances calculated from the five points,
and the resulting correlation coefficient, r = 0.5,which seems like amoderately good
correlation. To assess the significance, we calculate the t statistic from equation (9.3),
and then look up in a t-table to see the probability of getting that value of t or larger
for ν = N − 3 = 3 degrees of freedom. The result is P(>t) = 19.6%. So the result
is not significant at all, for the assumed null hypothesis that the points are actually
drawn from a bivariate Gaussian PDF with a correlation coefficient of ρ = 0. With
the traditional method, that is all that it is sensible to say; we would then ignore that
dataset and move on.

Trying a Bayesian correlation test gives a somewhat more nuanced insight. We
start by assuming that the data points are drawn from a bivariate Gaussian PDF,
with some value of the correlation coefficient ρ. Of course that assumption may be
wrong, but within this context, we can look at the relative performance of different
values of ρ. Next, we assume a uniform prior for ρ. Then, for each assumed value
of ρ, we calculate the likelihood of each data point, and multiply them together
to get the joint likelihood for the dataset; then finally we multiply the prior by the
likelihood to get the posterior. Note that we do not know the variances σ 2

x and σ 2
y ,

so we have only relative likelihoods, and likewise have only the relative posterior
P ′ (see Chap.8, Sect. 8.5). However because ρ is defined over a finite interval, it is
easy to numerically integrate P ′ and normalise. The resulting posterior probability
density is shown in the right hand side of Fig. 9.5. The result is roughly consistent
with the t-based significance test, in that ρ = 0 sits well within any sensibly chosen
90% integrated probability region, and the mean of P(ρ) is exactly the same as the
sample correlation coefficient r .
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Fig. 9.5 Upper: Five test
data points, as described in
the text. The dashed lines
mark the x and y means. The
legend shows the variances
calculated from these points,
together with the correlation
coefficient, t statistic, and the
significance of the
correlation. Lower:
Bayesian correlation test for
the same five data points.
The posterior probability
density function for ρ has
been calculated, on the
assumption of the points
being drawn from a bivariate
Gaussian PDF, and assuming
a uniform prior for ρ

between −1.0 and 1.0

On the other hand, you can see that the most probable value of ρ is larger than the
mean value, and it is twice as likely as ρ = 0. The curve confirms one’s instinct that
the five points most likely are correlated, but you wouldn’t bet your shirt on it. It is
also clear that P(ρ) is asymmetric; the data points are considerably more likely to
be correlated than anti-correlated. Overall, P(ρ) gives us much more information.

9.7 Correlation Test Pitfalls

(i) Correlation does not necessarily imply causation. The old chestnut is the claim
that during the twentieth century the size of feet in China was correlated with the
price of fish in Billingsgate market. These two quantities are not causally connected,
but they are linked by two separate connections with a common variable — time.
Finding such spurious and humorous correlations is a popular internet sport these
days, but there is a serious issue too. Returning to our initial example in Fig. 9.1, is
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there a causal link between black hole size and galaxy size? Or have they just grown
in the same environment? This is a contentious research question.

(ii) The r statistic ismost sensitive to simple linear relationships, ormore generally
monotonic ones. A peaked relationship may show little or no correlation, because
there is no overall tendency for large x to go with large y. An example can be seen
in Fig. 9.2 in the bottom row. There does seem to be a genuine connection between
the two variables, but it has r = 0.

(iii) As we discussed in Sect. 9.3 we need to carefully distinguish the tightness of
the correlation from its sensitivity or slope. The value of r tells us the tightness of
the correlation. It tells us nothing about whether about the relationship is a strong or
weak one, just how statistically noisy it is. To measure the slope, we need the line
fitting techniques that we discuss next.

9.8 Line Fitting

Suppose we have a model that describes how one variable depends on the other, so
that y = f (x). For example theory may tell us that the luminosity of a star should be
a non-linear function of its mass, such that L = A.Mα , but we don’t know what the
values of A and α are—they are the parameters of the model. In general our model
f (x) will be characterised by a set of parameters θ̄ = θ1, θ2, . . .. If we measure x, y
values for a sample, can we estimate “best” values for θ̄? There are many possible
ways to do this, most of which involve deriving a test statistic from the data set. To
simplify the problem, we can start by assuming that we are in “Situation B”, so that
x is an independent variable, and y is the dependent variable, with predicted values
yi = f (xi ). Finding the best parameters is then known, for historical reasons, as the
“regression of y on x”. The simplest andmost popular method is least squares fitting,
which we look at next.

9.8.1 The Method of Least Squares

The method of least squares fitting is a generalisation of the χ2 minimisation tech-
nique that we used for parameter estimation. For a single variable, in equation (7.10)
we defined

χ2 =
∑(

xi − xt
σi

)2

,

where xt is the “true” value of x and xi are the data values, each of which arises
from an independent measurement estimating xt , with error σ . We can see the xi as
repeated drawings from a parent distribution with mean xt and variance σ 2.
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Now, for our two variables, we are assuming that x is an independent variable,
and that we have chosen specific values xi at which we measure the corresponding
dependent value yi . However we also have a model y = f (x) which predicts the
value of y for each xi . What we want to do is to compare the prediction with the
measurement at each point. If the error on each yi value is σi , what we want to do is
to minimise the quantity

χ2 =
∑ (

yi − f (xi )

σi

)2

. (9.7)

9.9 Least Squares Fit to a Straight Line

Let us startwith the simplest example,where f (x) is a linear function, so that y = a +
bx . Let us further assume that each point yi is drawn from its ownnormally distributed
parent distribution, where each distribution has the same standard deviation σ as all
the others, but a different mean value μy = a + bxi . Often we simply don’t have
estimates of the σi values, and the best we can do is to assume they are all the same.
In the χ2 expression above, the constant σ then comes out of the sum and we simply
need to find the minimum of the quantity

S2 =
N∑
i=1

(yi − a − bxi )
2.

Minimising with respect to each of a and b we get

∂S2

∂a
= −2

∑
(yi − a − bxi ) = −2

∑
yi + 2Na + 2b

∑
xi = 0

∂S2

∂b
= −2

∑
xi (yi − a − bxi ) = −2

∑
xi yi + 2a

∑
xi + 2b

∑
x2i = 0.

So we have a pair of simultaneous equations for the unknowns a and b in terms of the
data points xi , yi . Taking the first equation and dividing through by N , the solution
for a in terms of b is

a = ȳ − bx̄ . (9.8)

which tells us that the solution must pass through the point (x̄, ȳ). Substituting this
expression into the second equation we find

b =
∑

xi yi − N x̄ ȳ∑
x2i − N x̄2

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2

. (9.9)
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and of course we can substitute this expression for b back into our expression for
a above. We thus have solutions for a in b in terms of sums of the data points. For
historical reasons this process is sometimes known as linear regression and the fit
obtained is known as a regression line.

9.9.1 Least Squares for Data Points with Individual Errors

If the each of the data points has a known and different error σi , then we minimise

χ2 =
∑[

yi − a − bxi
σi

]2

with respect to a and b which gives us

∑ yi
σ 2
i

− a
∑ 1

σ 2
i

− b
∑ xi

σ 2
i

= 0

∑ xi yi
σ 2
i

− a
∑ xi

σ 2
i

− b
∑ x2i

σ 2
i

= 0.

We could proceed as we did previously, solving for for a in terms of b and then
for b, but it is somewhat cumbersome, and also it is useful now to proceed a little
more formally because it sets us up for more complicated examples later. Its useful
to define the various sums as follows

S1 =
∑ yi

σ 2
i

S2 =
∑ 1

σ 2
i

S3 =
∑ xi

σ 2
i

S4 =
∑ xi yi

σ 2
i

S5 =
∑ x2i

σ 2
i

.

Each of the terms S1, S2 . . . is simply a number made of a sum over the data values
and their errors. The equations now read

S1 = S2.a + S3.b,

S4 = S3.a + S5.b.

The standard way to solve such a pair of linear equations is by the method of deter-
minants. The solution is

Δ =
∣∣∣∣S2 S3
S3 S5

∣∣∣∣ = S2S5 − S23

a = 1

Δ

∣∣∣∣S1 S3
S4 S5

∣∣∣∣ = 1

Δ
(S1S5 − S4S3)

b = 1

Δ

∣∣∣∣S2 S1
S3 S4

∣∣∣∣ = 1

Δ
(S2S4 − S1S3)

(9.10)
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The procedure then is that first we combine the data values to form the sums
S1, S2, . . ., then we combine those values with the equations above, and this gives us
the “least squares” solution for the parameters a and b.

9.10 Testing the Fit Using χ2

The procedure above gives the best fit, but is the fit statistically acceptable? To test
the absolute quality of the fit, we need to have values for the errors on each data point,
σi , so that we can calculate χ2, as in equation (9.7). Because we have estimated two
parameters from the data, the remaining degrees of freedom is ν = N − 2. We can
assign a probability to the fit, P(> χ2), based on the χ2 distribution for that value of
ν, and then possibly reject the fit if P < 5% or whatever, depending on our chosen
confidence level. As with our previous use of χ2, it is standard for χ2 fit tests to
consider only a one-tailed test—a bad fit will always give a large χ2. If the model
is wrong, this will not make the data points cluster nearer to the regression line than
they ought to.

A χ2 value that is unexpectedly large may occur (i) simply by chance, (ii) because
the model is wrong, or (iii) because the errors have been underestimated. The third
possibility should always be considered!

A χ2 value that is unexpectedly small may occur (i) simply by chance, (ii)
because the errors have been overestimated. Although the more common failing
is underestimating your errors, overestimating errors does happen more often than
you might think…

9.10.1 Errors on Fitted Parameters

We can compute the errors on our best fit parameter estimates using the propagation
of errors formula. Because we are treating x as the independent variable, with no
errors, then in this case σx = σxy = 0. Above we solved for a and b as in terms of
xi , yi , σi , involving sums over all N values of i . All the σi values contribute to the
error in a. The net error in a is

σ 2
a =

∑ [
σ 2
i

(
∂a

∂yi

)2
]

Plugging into a = 1
Δ

(S1S5 − S4S3) from above, the algebra is straightforward but
tedious…Sparing you the details, we end up with the pleasantly simple result

σ 2
a = 1

Δ

∑ x2i
σ 2
i

, σ 2
b = 1

Δ

∑ 1

σ 2
i

. (9.11)
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Fig. 9.6 Regression analysis
on three simulated datasets.
In each case the middle line
shows the true input
relationship, and the other
two lines show the result
from regressing y on x and x
on y respectively. See text
for further details
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9.10.2 Regression Model Consistency Checking

The mathematics applied in our “regression analysis” assumes that we are in “situa-
tion B” as described in Sect. 9.2—where x is an independent, not random, variable,
and y is a dependent, random, variable. However, line fitting is sometimes applied
where this is not a correct assumption. For example, the upper plot in Fig. 9.6 shows a
regression analysis on a sample of points drawn from a bivariate but correlated Gaus-
sian PDF, i.e. corresponding to “Situation A”. When we regress y on x , the resulting
line does not follow the major axis of the underlying PDF. If we try regressing x on
y we get a line which is wrong in the other direction. In fact, the bisector of these
two lines gives the right answer. The middle plot shows a simulation of Situation B.
First, a fixed grid of x values was chosen. Next, predicted y values were chosen with
a straight line function y = ax + b. Finally, the predicted y values were randomly
perturbed with a Gaussian PDF. The line resulting from a regression analysis of y on
x is shown, and it agrees well with the input straight line relationship. A regression
of x on y however gives an incorrect slope. It is hard by eye to distinguish the point
distribution in the upper and middle plots, which emphasises how important it can
be to perform this check.

The lower plot of Fig. 9.6 shows a third situation, where there is a straight line
relationship between the two variables, but there is a random scatter on both variables.
This shouldn’t be confusedwith SituationA, where the points share a commonmean;
in the right hand plot, each point has its own underlying mean. This third situation is
in fact a very common one in experimental science, with errors on both quantities. In
this case, like in the common-mean case, regressing y on x gives the wrong answer,
as also does regressing x on y. The correct answer is given by the bisector of the two
lines. Another technique is to minimise the othogonal distance from each data point
to the line under test, rather than the vertical Δyi distance.

9.11 Curvilinear Line Fitting

The next step up in complication from a straight line is to consider a polynomial
y(x) = a1 + a2x + a3x2 + · · · amxm−1. This is a curved line, but it is linear in the
parameters a1, a2, a3, . . ., and so may be referred to as “curvilinear”. In fact, more
generally, we could consider any set of m functions fk(x) such that

y(x) =
m∑

k=1

ak fk(x),

as long as the the parameters ak do not appear inside the functions fk(x) and the
combination of the functions fk is linear in the parameters ak . So for example, the
fk(x) could be f1 = 1, f2 = x , f3 = x2 etc; or could be f1 = sin x , f2 = sin 2x , etc.
We can always form
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χ2 =
N∑
i=1

1

σ 2
i

(yi − y(xi ))
2 .

Note that if we use the data to estimate the m parameters ak , the resulting χ2 will be
distributed with degrees of freedom equal to ν = N − m. To find those parameters,
we require that ∂χ2/∂ak = 0 for each ak , and so get m coupled linear equations.
As with the straight line, there is an analytic solution to these equations, but as we
increase m the solution gets much more complicated. Lets look at the simplest step
beyond a linear fit, the quadratic with y(x) = a1 + a2x + a3x2. If we manually work
through the solution, it turns out to be:

a1 = 1

Δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
yi

1
σ 2
i

∑ xi
σ 2
i

∑ x2i
σ 2
i

∑
yi

xi
σ 2
i

∑ x2i
σ 2
i

∑ x3i
σ 2
i

∑
yi

x2i
σ 2
i

∑ x3i
σ 2
i

∑ x4i
σ 2
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a2 = 1

Δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑ 1
σ 2
i

∑
yi

1
σ 2
i

∑ x2i
σ 2
i

∑ xi
σ 2
i

∑
yi

xi
σ 2
i

∑ x3i
σ 2
i

∑ x2i
σ 2
i

∑
yi

x2i
σ 2
i

∑ x4i
σ 2
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a3 = 1

Δ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑ 1
σ 2
i

∑ xi
σ 2
i

∑
yi

1
σ 2
i

∑ xi
σ 2
i

∑ x2i
σ 2
i

∑
yi

xi
σ 2
i

∑ x2i
σ 2
i

∑ x3i
σ 2
i

∑
yi

x2i
σ 2
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Δ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑ 1
σ 2
i

∑ xi
σ 2
i

∑ x2I
σ 2
i

∑ xi
σ 2
i

∑ x2i
σ 2
i

∑ x3i
σ 2
i

∑ x2i
σ 2
i

∑ x3i
σ 2
i

∑ x4i
σ 2
i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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This is probably enough to convince anybody not to try the cubic solution by hand!
Programming routines exist to solve coupled equations of more or less arbitrary size,
but at this point, most people would simply resort to numerical methods.

9.12 Arbitrary Function Fitting

What if the function f (x) that we wish to fit is not curvilinear in the sense defined
above? The function will still be characterised by a set of parameters ak , so that the
problem is to find the values of ak which mimimise χ2. However, in general, there
will not be an analytic solution to the best-fit parameters, and we need to resort to
the general-purpose model fitting techniques we discuss in Chap.10.

Sometimes however a non-linear problem can be transformed into a linear one
by a suitable transformation of variables. The most common example is wishing to
fit a dataset with an exponential form, e.g. y = ae−bx . If we take logs then ln y =
ln a − bx . If we apply the same transformation to our yi values, then we can fit a
straight line to those transformed data, i.e. we calculate

χ2 =
∑ [

1

σ ′2
i

[ln yi + ln a − bxi ]
2 ,

]

where we need to use also the transformed errors

σ ′
i = d(ln yi)

dy
σi = 1

yi
σi .

9.13 Key Concepts

Some of the key concepts from this chapter are:

• The subtle distinction between dependence and correlation
• The idea of covariance as a generalisation of variance
• The links between covariance, correlation, and dependence
• The definition of correlation coefficient r as as normalised covariance
• The use of the t-transform of r to test the null hypothesis of r = 0
• The use of the Fisher’s z-transform of r to test non-zero values of r
• The idea of using ranks rather than values for a robust test of correlation
• The idea of predicting y as a function of x , and minimising the scatter (i.e. χ2

between observed and predicted y values)
• How to find a best fit line by minimising χ2 with respect to several parameters
simultaneously

• The idea of a curvilinear function as one linear in its parameters but not necessarily
linear in x

• The idea of linearisation to turn a hard problem into an easier one.
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The key formulae from this chapter are: a formula calculating the sample covari-
ance (9.1); two formulae defining population and sample correlation coefficients
(9.2); the t-transform (9.3) and z-transform (9.4) of the correlation coefficient; the
Spearman rank correlation coefficient (9.5) and its t-transform (9.6); the definition
of χ2 for function fits (9.7); the solutions for the parameters of the best fit straight
line where all errors on the points are the same ((9.8) and (9.9)), and where the errors
are all different (9.10) and formulae for the errors on fitted parameters (9.11).

9.14 Further Reading

Standard correlation testing, and least-squares line fitting is covered inmany standard
statistics textbooks (see the Chap. 1 references). A more in-depth look at line-fitting
can be found in Bevington (2002), which is a very good guide to data analysis
in general. Assessing the significance of the correlation coefficient relies on the
assumption that the variables have a bi-variate Gaussian distribution. If you want
more detail on multi-variate Gaussians, a good place to start is the relevant wikipedia
page. As usual, it may be a bit more maths-y than you want, but there are good links.

The Bayesian approach to correlation-testing is not in normal textbooks. There is
a quite a nice blog post on this topic by Rasmus Bååth.

In this chapter, we treated the non-parametric approach to correlation testing
rather briefly. Actually, this is an important topic for physical scientists, as often the
assumption of Gaussian distributions is a poor one, and indeed sometimes it is very
hard to assign meaningful errors at all. In these circumstances, assigning ranks, and
looking at the sampling distributions of statistics calculated from those ranks, is about
all one can do. As well as correlation testing, scientists often want to test whether
two sample distributions are consistent with each other. Non-parametric tests such as
the Mann-Whitney U-test and the Kolmogorov-Smirnov test are very useful for this
task. Formanymany years the bible in this area has been Siegel and Castellan (1988),
which in turn was derived from a 1956 text by Siegel. It is still a very clear, simple,
and practical book. A more modern book covering similar material is Corder and
Foreman (2014), and a more advanced comprehensive survey is given byWasserman
(2007).

The concepts and techniques of correlation and “regression” testing were first
developed by Francis Galton in the late 19th century, and then improved and refined
by Karl Pearson and Ronald Fisher (but see the earlier references given in Stanton
(2001)). All three of these of giants of statistics were keenly interested in eugenics—
the idea that you can and should improve the genetic quality of a population—
and Galton actually coined the term. Eugenics was controversial at the time, but is
even more so now, with its subsequent connections with Nazism and racism more
generally. This somewhat unsavoury history is also the reason for the odd term
“regression” to describe looking for statistical connections between variables. It
arises from the fact that these early workers were keenly interested in heritability,
and “regression towards the mean”. The idea they were testing was that, for example,
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tall people tend to have tall children, so you see a correlation if you plot heights of
mothers versus daughters, but that—unless you control breeding—over successive
generations the connection will weaken.

9.15 Exercises

9.1 In the notes, it was stated that a perfect linear correlation should give r = 1.
Can you prove this? Assume that y = a + bx is exactly true for all points xi , yi , and
then consider the definition of r .

9.2 A small group of children take exams in maths, physics, and art. Their scores
are given in the table below. Is there any correlation between (a) maths and physics,
and (b) maths and art?

Student Maths mark Physics mark Art mark
A 41 36 38
B 37 20 44
C 38 31 35
D 29 24 49
E 49 37 35
F 47 35 29
G 42 42 42
H 34 26 36
I 36 27 32
J 48 29 29
K 29 23 22

9.3 Using themaths and physics exam data above, calculate the best fit linear regres-
sion line between maths and physics, (i) taking maths as the independent parameter,
and (ii) taking physics as the independent parameter. Assume that all points have the
same errors. Are these slopes the same?

9.4 Experienced markers say that the standard deviation on a mark is 5. Assuming
this is right, calculate the error on the slope for the case of regressing physics on
maths and comment. Is the difference seen between the slopes in the previous exercise
significant?

9.5 Suppose we have a dataset xi , yi . Fitting the regression line of y on x , i.e.
assuming x is the independent parameter, gives a solution y = a + bx ; regressing x
on y gives a solution x = c + dy which corresponds to y = a′ + b′x . How do the
two slopes b and b′ relate to the correlation coefficient?

9.6 Children from two different catchment areas are tested on maths and history
and the marks tested for correlation. A sample of 75 children from Richville gives
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r1 = 0.67; a sample of 63 children from Poortown gives r2 = 0.42. Is there any
evidence that these correlations are different?

9.7 Problem 9.2 asked if there was any evidence of correlation between Maths and
Arts scores. You probably examined this by using the standard correlation coefficient.
However, this relies on the data points having Gaussian errors, which may not be
the case here. Is the result any different if we try using Spearman’s rank correlation
coefficient? (On the other hand, if you already used the Spearman coefficient, do it
again now with the standard correlation coefficient!)
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Chapter 10
Model Fitting

10.1 Outline of Content

• Concepts of model fitting
• Numerical grid searching
• Constructing parameter intervals in multiple dimensions
• Goodness of fit
• Comparing models
• Machine Learning techniques

Fitting models to data is the daily work of modern physics. Is the Standard Model
of particle physics consistent with the data from the several instruments installed
at the LHC, and if so, can it tell us the mass of the Higgs Boson? How do we
go about answering a question as complex as this? We have laid the groundwork
in earlier chapters by seeing how we can test a hypothesis, estimate a parameter,
and construct an interval expressing our uncertainty; and how to fit a line where
two variables are connected. We now need to generalise to multiple parameters and
complex datasets. This generalisation brings in some interesting complications. Some
of these complications are about numerical problems and computational technique,
especially how to locate the “best” parameter set efficiently. We will deal with those
technical issues briefly. However, moving up to two or more dimensions in parameter
space also produces some new conceptual issues—how to locate contours containing
a required amount of probability, or of confidence, in multi-dimensional space; the
difference between interesting and uninteresting parameters; and how to account for
correlations between parameters. We will start by spelling out the logical steps in
model fitting.
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10.2 The Logic of Model Fitting

What is a model? Its a kind of sausage machine that accepts input data values and
predicts output data values, which can be compared to the measured values. When
we make that comparison, the measured value is usually a random variable, so we
have to know its probability distribution. The logic of the model fitting process is
illustrated in Fig. 10.1. The discussion that follows is a little abstract, but hopefully
all will become clearer in the worked example in the following section.

10.2.1 Input and Output Data

In earlier chapters we considered first a single data point x , and then a compound
dataset of N data points xi , which in the case of significance testing required us to
invent the idea of a test statistic computed from the data. Next we looked at bivariate
datasets (xi , yi ), usually with the xi being the independent variable, and yi being
the dependent variable, and looked at how to find our best estimate of functional
dependence between them, y = f (x). This problem is only analytically solvable
for a limited range of cases. More generally, we might have multiple independent
variables andmultiple dependent variables—for examplewemight set our equipment
to a variety of settings for both voltage and time delay, and at each pair of settings
measure both particle mass and particle velocity. We can represent the collection of
input data values symbolically as a vector x̄in. We then make a series of experimental
measurements that produces a set of observed output data values which we can
likewise represent as ȳobs.

10.2.2 The Model

The model itself is a mathematical machine for predicting output values ȳpred given
input values x̄in. This may be a single equation, or a set of steps with multiple

Fig. 10.1 Illustrating the steps in the process of model fitting
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equations. All that matters is that it is an algorithmic and quantitative process which
will produce definite predictions.

It is possible for a model to be a fixed process, but it is more normal for it to be
defined by a set of tuneable parameters. If there are m parameters, the set of values
(θ̄ = θ1, θ2, ...θk, ..., θm) can be seen as a point in an m-dimensional space, or as
a parameter vector. Some of the parameters may be crucial to the physical theory
we are trying to test, whereas others may be uninteresting or incidental parameters,
that we nonetheless have to estimate—for example parameters characterising the
behaviour of our detector. As we shall see below, the number of parameters, and how
many of these are interesting/uninteresting, makes a big difference to how we assess
the errors on our parameter estimates.

If we take a Bayesian approach, then our model needs not just a list of parameters
θ̄ , but a prior probability distribution for each parameter, πk(θk). From these we can
make the joint prior distribution π(θ̄). Note that this is a multi-variate probability
density, such that π(θ̄)d θ̄ is the amount of probability in the box dθ̄ = dθ1dθ2...

For simplicity, in most of what follows, we will drop the “bar” notation, and just
write θ as shorthand for the complete set of parameters θ̄ .

10.2.3 The Experiment Model

In order to test our model, and obtain parameter estimates and errors, it is not enough
to predict each output value y. We also need to know the probability distribution
of a given measurement, given the prediction, p(yobs|ypred)—or in other words the
likelihood of the data. To know this, we have to have a clear understanding of our
experimental process. Most typically, this means associating an error σy with each
data value, which we take to be the variance of a Gaussian distribution. We can then
calculate a joint likelihood L(ȳ) for the complete dataset.

Deriving the data errors can be a non-trivial process, for two reasons. Firstly, the
data values we use are often heavily processed, rather than the “raw” measurements.
We need to know the mathematical processing that was undertaken to arrive at our
data values, and use the appropriate transmission-of-errors formulae from Chap.2,
Sect. 2.6. Secondly, we need to understand how our equipment works. If we are using
an NMRmachine, or a confocal microscope, or a large reflecting telescope, this may
be non-trivial, and requires an experiment model, with its own parameters that may be
imperfectly known. For example, we knowwe should allow for the reflectivity of our
mirror, but believe that this has been degrading with time. What was the reflectivity
on the day the measurement was made?

Finally, we should be aware that the errors will not always be Gaussian. The prob-
ability of a given data value might for example be subject to the Poisson distribution,
or the Lorentz distribution. Bayesian methods can cope with other distributions, at
the cost of numerical complexity, but note that the χ2 method assumes data points
with Gaussian errors.
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10.2.4 Testing the Model

The general idea is to roam over parameter space, testing how the model compares to
the data—a multi-dimensional version of the process we stepped through in Chap. 8.
Each point in our parameter space θ corresponds to a testable hypothesis. At that
point, we will have predicted values to compare to the observed values, and a prior
probability for that set of parameter values. We can then assign a test-value to that
parameter-space point in several different ways—we could compute the χ2 value,
the likelihood, the posterior probability, or potentially other quantities, such as the
“negative log likelihood”. These things are all closely connected. Posterior is (nor-
malised) likelihood times prior, and for normally distributed data points,χ2 is closely
related to the log of likelihood (see equation (8.13)). Sometimes the quantity e−χ2/2

is used, which is proportional to likelihood.
We then repeat over a grid of parameter space points and make a map of P(θ)

(or χ2(θ) or L(θ)), where as usual θ is shorthand for the complete set of parameters
θ1, θ2.... The problem then is to take the multi-dimensional surface P(θ) etc and find
the point in parameter space that is “best” in some sense. This will normally mean
locating maximum posterior, maximum likelihood, or minimum χ2. Following this,
we want to construct a region in parameter space that expresses our uncertainty on
where the best point is—for example that encloses an integrated posterior probability
of 90%. Finally, we will want to know not just where the “best” point is in the context
of the model, but whether the model itself is any good at all. All of these questions
have both conceptual and numerical complications, which we will address in the
coming sections. But first, let’s look at a concrete example.

10.3 Mapping Out Parameter Space: Worked Example

Figure10.2 shows a real world example, taken fromwork bymy own research group.
Working through howwedealwith thiswill illustrate themain features of the process,
but will also bring out some common problems in model fitting.

10.3.1 The Data and Its Errors

The middle plot in Fig. 10.2 shows the light-curve of a quasar, i.e. how it’s brightness
changes with time. A quasar is the centre of a distant galaxy that has a very luminous
nucleus, thought to be powered by the accretion of matter onto a supermassive black
hole. All such quasars tend to be variable—their brightness fluctuates erratically up
and down by a few tens of percent. However the event shown in Fig. 10.2 is unusual
in that it shows an increase in brightness by a large factor over several years. Each
data point comes from an observation with one of several different telescopes on
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Fig. 10.2 Fitting a
micro-lensing model to an
outburst in a quasar. The
upper plot illustrates the
physical nature of the model.
The grey-scale blob indicates
the lensing effect caused by
an intervening star,
decreasing with angular
distance from the star in the
plane of the sky. The
horizontal line indicates the
track of the quasar relative to
the star. The middle plot
shows the observed
brightness of the quasar
versus time, with errors
estimated during the data
reduction process. The axis
is in days (Modified Julian
Date). The curves show
brightness versus time
predicted by the lensing
model, for three different
choices of the parameters of
the model. The lower plot
shows the calculated
(relative) posterior
probability versus a grid of
values for the two key
parameters—the Einstein
timescale tE, and the impact
parameter y0
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a specific night. The time of the observation ti can be taken as the independent
variable, and the measured flux Fi as the dependent variable. (Actually, the quasar
was measured at several different wavelengths each night, but we will simplify by
looking at one specific wavelength). The raw data is a CCD image with some number
of electron-counts in each pixel. We first sum up neighbouring pixels over a small
region surrounding our quasar. The error on this total count is the Poisson error.
To find the flux of the quasar in SI units, we repeat the process for other stars in
the image that have already been measured by a previous survey, and get a scaling
factor. The Poisson variance is scaled by the same factor. The counts for the quasar
are large enough that we can treat the Poisson variance as a Gaussian error, although
this approximation becomes a little poor for some of the points with the largest error
bars.

The curves drawn through the data points relate to the model we will discuss
below. You can see that this seems to be a fairly good overall description of what
is going on in the observations. However, the points are scattered about the smooth
curve more than you would expect given the estimated error bars. Sometimes this
is a sign that our experimental errors have been underestimated. However, in this
case, it is likely that it is because there are two separate reasons why the quasar
is changing in brightness; something is causing a long-slow outburst over years,
but on top of this we have smaller, month-to-month erratic variability that has a
different physical cause. The long-slow outburst is the phenomenon we are trying
to understand. Ideally our model would include both effects, but the problem is that
we don’t really understand the month-to-month erratic variability, so we don’t know
how to do this. Alternatively we can treat the erratic variability as an extra “cosmic
noise”, estimate its size, and add it in quadrature to our experimental errors. This is
also unsatisfactory, because the erratic variability may not be a Gaussian process.

10.3.2 The Physical Model

There are a variety of possible explanations for the long-slow quasar outburst, but
we would like to test a specific idea. The theory is that a second galaxy is in the line
of sight between us and the quasar. Most of the time this has little effect, but as the
stars in the intervening galaxymove around, occasionally the quasar will be in almost
perfect alignment with one specific star. The gravity of the star can then bend the light
from the background quasar, and produce a focusing effect known as gravitational
lensing, which has the effect of magnifying the light from the quasar. The upper
plot of Fig. 10.2 illustrates the strength of the magnifying effect as a function of the
distance from the foreground star (in angular terms on the plane of the sky) as a
greyscale. If, as we expect, the quasar and star are in relative motion, we can see
how moving along the track indicated would cause an apparent brightening and then
fading with time.



10.3 Mapping Out Parameter Space: Worked Example 189

The scale of themagnifying region, as seen on the plane of the sky, is characterised
by an angular scale known as the Einstein angle θE which depends on the geometry
of the situation. We don’t know how fast the star and quasar are moving relative to
each other, but we can characterise this by the Einstein timescale tE which is the time
taken to cross the Einstein angle. We can then set up the situation in terms of the
time relative to the Einstein timescale, t/tE, and the angular distance between the star
and the quasar in units of the Einstein angle, y = θ/θE. The physics of gravitational
lensing then says that the magnification factor at position y will be

μ(y) = y2 + 2
√
y(y2 + 4)

.

From Fig. 10.2 you can see however that y will be changing with time following

y(t) =
√
y20 + (t − t0)/tE,

where y0 is the impact parameter, or distance of closest approach. Finally, the bright-
ness (flux) of the quasar will be given by

F(t) = F0μ(t),

where F0 is the baseline flux, i.e. the flux of the quasar before the event. The model
then predicts the flux of the quasar as a function of time, through the three equations
above, with four adjustable parameters—F0, t0, y0, and tE. If we determine the val-
ues of those four parameters which give a model that best describes the data, we
can then see what they imply in terms of other astrophysical parameters, such as the
mass of the star, the distance to the star, and the distance to the quasar.

10.3.3 The Calculation

The middle plot shows three curves defined by different example values of the four
parameters above. You can see that they are all roughly plausible, but the red curve
looks better than the green curve. For any one of those curves we can calculate
the joint likelihood of all 55 data points. Given that we are assuming the errors are
Gaussian, we could alternatively calculate χ2. Or we could decide priors for the
parameters and calculate the posterior. We can then in principle calculate our chosen
metric over a grid of values for each of the parameters F0, t0, y0, and tE, and examine
its behaviour. Of course it is hard to visualise amulti-dimensional surface. In our case
the parameters y0 and tE are getting at the essence of the physical problem, whereas t0
and F0 seem rather accidental and uninteresting. In the lower plot of Fig. 10.2we have
fixed the values of t0 and F0 at reasonable values estimated by inspection, and show
the variation of posterior probability against the other two parameters, P(y0, tE). For
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tE we took a uniform prior between minimum and maximum values; for y0 we used
a prior weighted linearly towards larger values of y0, with a maximum value. There
is a lot of data, so that the shape of the surface was in fact not very sensitive to the
priors.

The resulting P(θ) is smooth and fairly close to a bivariate Gaussian. The posi-
tion of the peak of P seems fairly clear. In the next section we will discuss briefly
techniques for locating peaks objectively, along with the uncertainties. Note that the
parameters y0 and tE are strongly correlated—the 2D shape is tilted in the parameter
space. This makes a big difference to estimating our errors, as we will see later. In
principle we should calculate a four dimensional surface for all the parameters, but
of course this is quite hard to visualise.

You will note that the z-axis is in units of relative P value, rather than normalised
probability density. This is because of two difficulties, both of which are fairly typical
in model fitting. The first difficulty is knowing the correct probability distribution for
the data values. As discussed in Sect. 10.3.1 the data points are scattered more than
you would expect from the estimated errors, which could be because of an additional
variability not included in our model. If we calculate χ2 rather than P , we find
χ2 ∼ 180 rather than the ∼55 we might expect for a good model. We can artificially
increase σy to account for this, using σ 2

net = σ 2
y + σ 2

vblty. However, because we don’t
have a model for the underlying erratic variability, it is hard to pick an objective
value for σvblty. The choice of σvblty changes the absolute values of P but changes
the shape of the surface very little.

The second reason for using relative values of P is sheer numerical difficulty. To
get the normalising factor E we need the multidimensional version of equation (8.8)

E =
∫

L(θ)π(θ)dθ.

In Chap.8, Sect. 8.5.3, we already noted that calculating E even in one dimension
can be problematic. When we move into multiple dimensions, and large numbers of
data points, it can be close to impossible. Also, for large numbers of data points the
likelihood will be a very small number, so programs usually work in log space or
re-scale as they go along.

10.4 Techniques for Finding the Best Parameter Set

The “best” value of the parameter vector θ can be taken to be where we find the
maximum of P , or the minimum of χ2. How do we locate this point? We will look
briefly at types of technique.We will talk in terms of maximum P , but the same logic
applies to maximum L or minimum χ2.
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10.4.1 Grid Search Methods

The simplest thing is to map a complete grid on a reasonably fine scale, and record
the largest value. For nearly all practical problems, this is far too slow, even on big
computers. One way to speed up is to start with a few coarse cells, locate the cell with
largest P , then subdivide this cell into smaller cells and repeat, gradually zooming
in to an accurate location of the maximum. A danger in this approach is that the
absolute maximum might be located within a broader minimum. A better method
is the zig-zag search, which for χ2 methods is usually known as a ravine search.
Consider being on the side of a hill but not yet at the very top. If you move along one
parameter while holding the others constant you will cross a kind of local maximum.
The trick then is to locate the highest point in your neighbourhood, then pick another
parameter in an orthogonal direction and repeat. The result will be a kind of zig-zag
towards the overall maximum, and the number of calculations will be much smaller
than for a complete grid-search.

10.4.2 Gradient Searches and Related Methods

The zig-zag method follows the hill up towards the overall maximum, but in a zig-
zagging manner. The idea of the gradient search method is find the direction of steep-
est ascent in a small region surrounding the current location, and then take the next
step in that direction. The components of the gradient are calculated from ∂P/∂θ j

along each parameter direction, but scaled to make each parameter step dimension-
less. Near the top the gradient approaches zero, so it is best to overshoot and then use
the Gaussian/parabolic approximation to locate the maximum, as described in the
next sub-section. There are clever variations on the gradient search method which
don’t need explicit calculation of the derivatives. One of these is the “amoeba”
method. For m parameters, this calculates P at a cluster of m + 1 points. The point
with maximum P is found, and then the centroid of the remaining points. The direc-
tion moved is the line joining these two. Another very popular method is the “Monte
Carlo Markov Chain (MCMC)” method. This again starts with a cluster of m + 1
points, calculates the covariance matrix of recent points (see below) and takes a ran-
dom step based on that covariance matrix. The idea of a “Markov Chain” will be
explored more generally in Chap.12.

10.4.3 Sub-grid Maximum Location

In any one-dimensional slice, we can locate the local maximum using the Gaus-
sian/parabolic method of Chap.8, Sect. 8.5.2. We refer to this as “sub-grid location”
because the solution can be calculated to greater accuracy than the spacing of the
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grid points. Within the context of the grid search/gradient search methods described
above, we can take one parameter at a time, use three data points, solve for the
local maximum, and iterate. We could also in principle construct a solution for the
parameters of a paraboloid in m dimensions and solve in one go.

10.5 Constructing Uncertainty Intervals

To simplify the discussion of constructing parameter intervals, we will discuss the
case ofm = 2 parameters, whichwewill label θ1 = a and θ2 = b. The two parameter
case brings out all the key features, and it is not too hard to generalise to more param-
eters. Likewise, working with posterior probability is somewhat easier to understand
than working with χ2, so we will look at that first.

Having found the point (a0, b0) where P(a, b) is a maximum, what we want to
do next is is to construct a contour which encloses the required amount of integrated
probability. There may in general be many such contours, and they may not even
be closed loops. Traditionally what we do is to find the ellipse centred on (a0, b0)
which approximates a contour enclosing the right amount of probability. However,
as discussed in Sect. 10.3.3, very often in practice we are not able to calculate the
marginal likelihood E in order to get a properly normalised probability density P , and
so need to work with P ′(a, b) = L(a, b)π(a, b). If we are not sure how to normalise
our priors, we may be working with a quantity which in turn is only proportional to
P ′. Just as in the 1D case, we can get round this lack of normalisation by assuming
that P ′ is Gaussian.

10.5.1 The Gaussian Approximation

We assume that we already have the peak (a0, b0), but now we want the variances1

which describe the bivariate Gaussian which approximates the surface P(a, b). Gen-
eralising the “curvature” method of Sect. 8.5.2, we can find the variance in each axis
by

σ 2
a =

(
∂2 log P

∂a2

)−1

σ 2
b =

(
∂2 log P

∂b2

)−1

. (10.1)

The covariance is given by

σab =
(

∂2 log P

∂a∂b

)−1

. (10.2)

1Not to be confused with the variances of the data points!
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Note that σab = σba , and the complete set of quantities is known as the “covariance
matrix”

(
σ 2
a σab

σab σ 2
b

)
.

Following the discussion of Sect. 5.8.3, the iso-density contours of the bivariate
Gaussian are given by ellipses described by

a2

σ 2
a

+ b2

σ 2
b

− 2
ρab

σaσb
= k, with ρ = σab

σaσb
. (10.3)

where k = 1 describes the 1σ contour etc.Howwe then use the variances/covariances
to construct uncertainty intervals needs a little more careful thought. We will divide
the discussion into three cases.

10.5.2 The Case of One Interesting Parameter

Suppose we consider b to be an accidental or uninteresting parameter, in the sense
that we don’t care what it’s value is. (An example might be the time of maximum, t0,
in our earlier worked example). We could fix the value of b at b = b0 and construct
the conditional distribution of a, i.e. the slice through P(a, b) at fixed b = b0. The
standard deviation of the conditional distributionwill be given by σa as in the analysis
above, and we can construct any required interval using standard Gaussian areas.
Somewhat better, we may ask “what is the spread of a, regardless of the value of b?”
This would be given by the distribution of a marginalised over b. For the bivariate
Gaussian, this will give the same answer as the conditional distribution, but for a
more general shape this will not be the case.

10.5.3 The Case of Two Interesting But Uncorrelated
Parameters

If both parameters are interesting, we have to consider their joint error rather than
marginalising over one of the parameters. In Sect. 5.8.1 we considered the problem
of integrating the bivariate Gaussian to a radial distance r = (x2 + y2)1/2, where
the one dimensional variances are given by the same σ 2 in each of x and y. To
achieve integrated probability of 68.3%, equivalent to ±1σ for the 1D Gaussian, we
need to extend out to r = 1.52σ . If the variances are unequal, then we trace out the
ellipse given by equation (10.3), with σab = 0 and k = 1.52. This means that the
68.3% probability interval for a is given by a0 ± 1.52σa , and for b by b0 ± 1.52σb.
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For other probability intervals, to include integrated probability Pint we use k =√−2 ln(1 − Pint).

10.5.4 The Case of Two Interesting and Correlated
Parameters

If the parameters are correlated, the iso-density ellipse is tilted in the a, b plane. The
most appropriate thing to is to show the ellipse, or to quote both the variance and
the covariance; but if one wants to quote a range for a single parameter, a sensible
thing to do is to quote the limits of the bounding box enclosing the tilted ellipse, as
shown in Fig. 10.3. In Sect. 5.8.3 we discussed how to calculate the rotation angle
and major axis of the rotated ellipse, and a little more algebra shows how to derive
the bounding box limits. Alternatively, one can use standard matrix manipulation
routines to find the eigenvectors of the covariance matrix, which gives the principal
axes of the ellipse.

10.5.5 Finding χ2 Confidence Intervals

There are two ways to find a suitable interval if one has calculated χ2(a, b). The first
method is convert χ2 to (relative) likelihood using L ∝ const + e−χ2

. The likelihood
surface can then be dealt with in exactly the same way as P(a, b). The variances and
covariances of L can be calculated using

Fig. 10.3 Constructing
posterior probability / χ2

confidence intervals for two
correlated parameters. Two
effects need to be taken care
of. The contour that encloses
68.3% joint probability is
further out than the 1σ
contour; and to enclose the
range of that contour, we
need to construct the
bounding box enclosing it
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σ 2
a =

(
∂2 log L

∂a2

)−1

= −1

2

(
∂2χ2

∂a2

)−1

,

and similarly for σb and σab. Alternatively, one can generalise the Δχ2 method of
Sect. 8.6.4. First we find the minimum value of χ2 = χ2

min, at the best fit (a0, b0).
When we examine values of χ2 at other values of a, b, the test statistic Δχ2 =
χ2 − χ2

min will be distributed as χ2 with ν = 2 degrees of freedom. We then find for
example that 68.3 and 90% confidence are located atΔχ2 = 2.30, 4.61 respectively.
For two interesting correlated parameters, the technique is then to locate the required
critical χ2 contour, and either show this graphically, or construct the ellipse that
approximates the contour and find its bounding box.

10.5.6 Modelling with Many Parameters

The techniques described above generalise fairly straightforwardly in principle to
larger numbers of parameters, θ̄ = θ1, θ2, ...θm . One can marginalise over any subset
of uninteresting parameters, but look at full joint errors for the remaining parameters.
Of course it is hard to visualise multi-dimensional surfaces. A common technique
is to take two parameters at a time, marginalise over all the others, and examine the
contours for the two chosen parameters. (See the example in Fig. 10.4.) Taking every
possible pair, one can spot which parameters are correlated with which others, and
decide how to quote overall joint errors. When using the Gaussian approximation,
we can calculate the covariance matrix by computing every term

σ 2
i j =

(
∂2 log P

∂θi∂θ j
.

)−1

We can then use standard matrix inversion techniques to find the eigenvectors of
the covariance matrix and so the principal axes of the multi-dimensional ellipsoid.
How do we find the integrated probability within some region of the general m-
dimensional Gaussian ellipsoid? We can define a radial distance in m-dimensional
space by r2 = θ2

1 + θ2
2 + · · · θ2

m . By suitable co-ordinate transformations (rotation
and stretching) we can always transform to co-ordinates where each of the σθ are
the same, and ask, to what value of k = r/σ do I need to reach out to include
68.3% probability, or 90% probability etc. This problem is not generally analytically
solvable, but has well known numerical solutions. Because of the correspondence
between log likelihood and χ2 noted in equation (8.13), this problem is in general the
same as the problemof integratingχ2 for the appropriate degrees of freedom. Sowhat
we do is to look up tables of the integral of χ2 for ν = m degrees of freedom, which
will tell us the Δχ2 we need. The corresponding k = r/σ is given by k = √

Δχ2.
Table 10.1 summarises the required values of k and Δχ2 for various numbers of
parameters and probability/confidence levels.
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Fig. 10.4 A“corner plot” taken fromBruce et al. (2017). This originates fromfitting amicrolensing
model to a quasar light curve, as outlined in Sect. 10.3. There are seven parameters in the model,
leading to a seven-dimensional posterior surface P(θ). Each parameter is represented in both a
row and a column. The 2D colour plot at the interaction of every pair of parameters is a contour
plot representing the P(θ) surface marginalised over all the remaining parameters—so at position
(2, 5) for example we can see that our estimate of Ml (the mass of the lens) and v⊥ (the relative
velocity of the lens and the source) are highly correlated. At the end of each row/column we see for
each parameter in turn, the one-dimensional PDF resulting from marginalising over all the other
parameters

10.5.7 Limits of the Gaussian Approximation

The Gaussian approximation for either the likelihood surface or the posterior surface
is good at small multiples of σθ , and as long as there are large numbers of data points.
As well as making the surface Gaussian, having large numbers of data points means
that we will not be very sensitive to the choice of prior, and so the likelihood and
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Table 10.1 Gaussian/Δχ2 regions for multi-parameter fits

68.3% 90% 95% 99%

m = 1 k = 1.0
Δχ2 = 1.0

k = 1.64
Δχ2 = 2.71

k = 1.96
Δχ2 = 3.84

k = 2.58
Δχ2 = 6.63

m = 2 k = 1.52
Δχ2 = 2.30

k = 2.15
Δχ2 = 4.61

k = 2.45
Δχ2 = 5.99

k = 3.03
Δχ2 = 9.21

m = 3 k = 1.88
Δχ2 = 3.53

k = 2.50
Δχ2 = 6.25

k = 2.95
Δχ2 = 7.81

k = 3.37
Δχ2 = 11.34

m = 5 k = 2.43
Δχ2 = 5.89

k = 3.04
Δχ2 = 9.24

k = 3.27
Δχ2 = 11.07

k = 3.85
Δχ2 = 15.09

m = 10 k = 3.40
Δχ2 = 11.54

k = 4.00
Δχ2 = 15.99

k = 4.28
Δχ2 = 18.31

k = 4.82
Δχ2 = 23.21

m = 20 k = 4.74
Δχ2 = 22.44

k = 5.33
Δχ2 = 28.41

k = 5.60
Δχ2 = 31.41

k = 6.13
Δχ2 = 37.57

posterior surfaces will be very similar. If we have small numbers of data points, the
Gaussian approximation may be poor, and we may get quite different answers for
the χ2 and Bayesian methods.

For any number of data points, the Gaussian approximation will start to break
down at larger multiples of σθ . In Sect. 8.5.3 when considering 1D parameter fitting,
we already noted the rule of thumb that 68% or 90% regions may be safe, but a 99%
region may be badly underestimated. For larger numbers of parameters, this problem
sets in much earlier, because one has to stretch out to large multiples of σθ even for
modest amounts of integrated probability, as we can see in Table 10.1. Even for a
modest m = 3 parameters, for 90% probability we need to reach a 2.5σ contour.
Another way to look at this, is that for a trivariate Gaussian, the 1σ contour contains
only 20% of the integrated probability.

Rather than set guidelines for what is safe and what is not, the thing to do is to
examine the calculated surface. Do the slices/marginalised profiles look Gaussian?
Do the contours look symmetrical, or are they banana-shaped? Issues like this are
common inmodel fitting. It is always healthy to show the actual contours. InBayesian
fitting, one should ideally follow the contours far enough out to get a reasonable
estimate of the marginal likelihood E in order to get an empirical normalisation
of posterior probability. For large numbers of parameters however, this becomes
computationally very expensive.

10.6 Goodness of Fit

Once the best fit set of parameter values θ0 has been found, can we make a statement
about whether the model is a good description of reality? If we have used χ2 we can
certainly do this. The set of best-fit parameter values constitutes a hypothesis that we
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can test in the usual way, using the minimum value χ2
min, which will be distributed as

χ2 with ν = N − m degrees of freedom, where N is the number of data points and
m is the number of parameters fitted. Note that to make an absolute test based on χ2,
we need to assume that the data errors are Gaussian, and we have to be confident that
we know the errors accurately. Over-estimating errors may lead to false confidence
in a model, and under-estimating errors can lead a false rejection of a model.

With the Bayesian method, we do not have a measure of absolute goodness of
fit for a single model. Bayesian methods always concern relative degrees of belief.
Within the context of model fitting, this means assuming the model, and calculating
the relatively believability of different values of the parameters.Agrowingly common
procedure is to calculate P(θ) to get the best model, but then to calculate χ2 at the
position of the best-fit model, to quantify the model’s overall believability.

It is tempting to take the marginal likelihood E = ∫
π(θ)L(D|θ) as a measure

of the overall agreement of the data with the model, integrated over all parameter
values. It is after all referred to as the “Bayesian Evidence”. However, there is no
absolute scale for E . It is sensitive to the units of the data, the number of data points,
and so on. On the other hand, if those things are fixed, the relative values of E can
be used to compare two models, as we shall describe shortly.

10.7 Model Comparison

Suppose we have two models M1 and M2, and have calculated P or χ2 for each of
these. Even if we can’t reject one model or the other, can we say which we prefer?
There are several ways to do this.

10.7.1 Model Comparison Using �χ2

Suppose our two models M1 and M2 have degrees of freedom ν1 and ν2, and that
when compared to our data they give best fit χ2 values of χ2

1 and χ2
2 . If χ2

1 > χ2
2

we might want to prefer M2, but how often does this happen by chance? The trick
is to form a test statistic using the χ2 and ν values for which we know the sampling
distribution. This is a solvable problem if the two models are “nested”, i.e. one is a
subset of the other. For example we might first try fitting a quadratic polynomial, and
then try a cubic polynomial. Note that a model with more parameters will usually
produce a better fit than one with fewer parameters; if we add a parameter to the
same model, this is almost always true. But is it a significantly better fit?

The simplest test statistic to use is Δχ2 = χ2
1 − χ2

2 , which we have met before
in the context of parameter interval estimation. For two equally good nested models,
this quantity will be distributed as χ2

ν with ν = ν1 − ν2. You can then answer the
question “if I assume these two models are in fact equally good, how often would I
get aΔχ2 value this large or larger?”. If you reject the hypothesis that the hypotheses
are equally good, then you can (tentatively) prefer one model over the other.
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This technique is often used as an extra parameter test, i.e. in order to ask the
question “am I justified in adding an extra parameter to my model?”. If there is no
significant difference, then Δχ2 will be distributed like χ2

1 ; if we see a large value of
Δχ2, we can reject the null hypothesis and conclude that the extra parameter does
genuinely help.

10.7.2 Model Comparison Using the F Test

Another way to compare the χ2 values is to take their ratio. We use the F statistic

F12 = χ2
1 /ν1

χ2
2 /ν2

. (10.4)

This follows the rather ghastly distribution

pν1,ν2(F) = 

(

ν1+ν2
2

)



(

ν1
2

)



(
ν2
2

)
(

ν1

ν2

) ν1
2

F
ν1
2 −1

(
1 + ν1

ν2
F

)− 1
2 (ν1+ν2)

. (10.5)

This is a two parameter family of curves, with mean and variance

μF = ν2

ν2 − 2
, σ 2

F = 2ν2
2 (ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4)
.

Luckily of course one rarely one has to compute this oneself, but just look up values
of F in tables. However, be careful about whether you have calculated F12 or F21. For
reasonably large ν1 and ν2 we can use a Gaussian approximation, and ν1 ≈ ν2 ≈ ν

and we get the much simpler version

μF ∼ 1, σ 2
F ∼ 4

ν
. (10.6)

10.7.3 Likelihood Ratio Test

The core of any hypothesis testing is the likelihood of the data given the model.
Once we have found our best parameter values for both models M1 and M2, why not
directly compare the likelihoods? We could compute the statistic
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R = L1

L2
.

The issue then is to find the sampling distribution for our test statistic R. This can
in principle be done whatever the probability distribution the data points follow.
However, in practice this method is useful for Gaussian distributed data points. From
equation (8.13) we have

log L = −1

2
N log 2πσ 2 − χ2

2
.

If we compare two models, χ2 changes but N and σ stay the same, so

2 log R = Δχ2,

and the likelihood ratio test boils down to being the same thing as the Δχ2 test.

10.7.4 Bayesian Model Comparison: The Bayes Factor

Although we can’t use Bayesian methods to assess a single isolated model, we can
use them to compare rival models. Suppose first of all we compare the models at the
best fit parameter values. Then this is like the simple case of comparing two fixed
hypotheses A and B, as we considered in Chap.7 and we have

P1 = π1L1

E
, P2 = π2L2

E
where π1 + π2 = 1 and E = π1L1 + π2L2.

Note that here the subscripts 1 and 2 refer to the fixed hypotheses corresponding to
the best-fit versions of models M1 and M2. Then as we noted in Chap.7, Sect. 7.5, if
we take the posterior ratio the marginal likelihood E cancels out and we have

P1
P2

= π1

π2
· L1

L2
.

The ratio of likelihoods B12 = L1/L2 is known as the Bayes Factor and quantifies
the relative agreement of the data with the two hypotheses.

Now suppose we wish to compare two complete models, each with their own
parameter vectors θ1 and θ2. Within the context of each model, the parameters
will have their own normalised prior probability distributions π1(θ1|M1), π2(θ2|M2).
When fitting the data, we will get likelihood functions L1(θ1) = p(D|θ1, M1) and
L2(θ2) = p(D|θ2, M2). We have written the dependencies more carefully than nor-
mal here. The likelihood L1 is a function of the parameter vector θ1, but always
assuming the context of model M1. The overall likelihood for each model is the
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likelihood marginalised over all parameter values, but always in the context of the
model concerned. We can write

E1 =
∫

π1(θ1|M1)L1(D|θ1, M1)dθ1, E2 =
∫

π2(θ2|M2)L2(D|θ2, M2)dθ2.

Remember that θ1 and θ2 are actually vectors, so that these are multi-dimensional
integrals. The next step is to assign a prior probability for each model overall π(M1)

and π(M2)—i.e. our relative degree of belief in each model before we get any data.
It is important to distinguish these from the prior probability distributions for the
parameters, within the context of each model. Then we can quantify our relative
degree of belief in each model overall after getting the data:

P(M1)

P(M2)
= B12

π(M1)

π(M2)
, (10.7)

where B12 is the Bayes factor

B12 = E1

E2
=

∫
π1(θ1|M1)L1(D|θ1, M1)dθ1∫
π2(θ2|M2)L2(D|θ2, M2)dθ2

. (10.8)

In practice when considering whole models it is normal to treat them equally and so
assume π(M1)/π(M2) = 1, in which case our relative degree of belief depends only
on the Bayes factor. How do we interpret this number? Following the discussion in
Sect. 7.5, we can see B as the betting odds on M1 versus M2. So if B = 8.0 that is 8:1
on, and if B = 0.2 it is 5:1 against. Starting with Jeffreys, there have been various
attempts to turn the value of B into qualitative words, so that for example, B = 1 − 3
is “not worth more than a mention”; B = 3 − 10 is “substantial”; B = 10 − 100 is
“strong”; and B > 100 is “decisive”.

10.8 Artificial Intelligence Techniques

The growing field of Artificial Intelligence (AI), and especially the subset of AI
known as Machine Learning (ML), has some similarities to the topic of probabilistic
model fittingwhichwe have considered in this chapter, but also some key differences.
We will take a very brief look at these similarities and differences.

In model fitting, we have an algorithm that performs calculations on input data
in order to predict output values, which are then compared to observed values. The
algorithm has tuneable parameters, which are varied to see how the comparison of
predicted and observed output values changes; and we have some kind of perfor-
mance metric—likelihood, χ2 etc—which is used to judge the performance of the
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algorithm for different parameter values. We then find the “best” parameter values
by maximising/minimising our chosen performance metric. The ultimate point of
the exercise is understanding. The algorithm is a mathematical representation of a
theoretical idea, and the parameters have physical meaning within that context—the
parameters are things like the mass of a particle, or the scaling constant that connects
luminosity and temperature.Wewant to know the values of those parameters in order
to understand Nature.

Inartificial intelligence, the aim is not normally understanding, but rather decision
or action. We once again have an algorithm acting on input data to predict output
data, but the point is to do something with the output data. For example, the input
data may be a stream of images, and the output data one of a set of categories, such as
“dog”, “cat” or “fish”.We run each image through the algorithm and decide what sort
of animal we have. Alternatively the output may be a number; for example each input
datasetmaybe a stockmarket time series, and theoutput data value is a predicted share
value in a week’s time. Before using such methods to make decisions, the algorithm
has to be trained on a set of inputs for which the correct answer is known—for
example a set of images for each of which we know the answer to whether it is a
dog or a cat etc. This is where the process is similar to model fitting. The algorithm
will have a set of parameters, which the software will adjust to try to get the correct
answers. The metric for success will often be simply the fraction of correct answers.
However rather than a handful of parameters, there may be hundreds or thousands
or even millions of parameters—for example the node values in a multi-layer neural
network. The algorithm and its parameter values are not interpretable in any simple
sense—they just adjust themselves until the system works. This is what we mean
by machine learning. We do not use a physical model of the situation to impose a
logical structure on the parameters—we just let software do its own thing and see
where it gets to. The idea is that this is analogous to what your brain is doing—hence
the description of such methods as Artificial Intelligence.

Beyond these general ideas, there are many more subtleties, such as whether the
algorithm is supervised or unsupervised, and whether the code itself is adaptive, that
we don’t have space here to go into. An issue that is very relevant to the theme
of this chapter however, is how we might assess the uncertainty on the results we
obtain. In model fitting, because the parameters are physically meaningful, we want
not just their best values, but a probability distribution for the parameters, based on
our understanding of the success-metric that we are using. In machine learning, the
values of the parameters are of no interest. However, a common situation is that we
try several different algorithms—neural networks, random forests, etc—and want to
know which one works best. We might find, say, that on our training set the random
forest gives the right answer 87% of the time, and the neural network gives the right
answer 84% of the time. Does this mean that the random forest algorithm is definitely
the one to use? Or did we by chance pick a training set that happened to work better
for the random forest? Typically, there is no a priori way to calculate the probability
distribution for our success metric, but we can achieve this empirically. One method
is choose a separate validation set. Another way is to pick many random subsets
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of our training set, calculate the success metric for each of these, and examine the
distribution of resulting values. A recurring issue is that in practice, the performance
of any machine learning algorithm is only as good as the training set it is given.

10.9 Key Concepts

Some of the key concepts from this chapter are:

• The idea of a model generating predicted values to compare to observed values
• The need for an experiment model as well as a physical model
• The idea of multiple parameters as defining a multi-dimensional space to explore
• The variety of numerical techniques for finding maximum posterior or likelihood
or minimum χ2, including gradient search, sub-grid location, and the Gaussian
approximation

• Using the variances/covariances to construct 2D parameter intervals
• The distinction between interesting and uninteresting parameters
• The distinctions between conditional errors, marginalised errors, and joint errors
• Constructing a bounding box to allow for correlated parameters
• Testing absolute goodness of fit with χ2 values
• Comparing models using Δχ2, the F-test, and the Bayes factor
• The general ideas of Machine Learning algorithms.

The opening of this chapter was mostly conceptual and numerical, but from
Sect. 10.5 onwards there were several key formulae: the formulae for obtaining
parameter variances, assuming the Gaussian approximation ((10.1) and (10.2)); the
equation describing the ellipse approximating the k − σ contour (10.3); the definition
of the F-ratio statistic (10.4), its PDF (10.5), and its expected mean and variance for
large ν (10.6); and finally, the Bayes factor and its use in comparing models ((10.7)
and (10.8)).

10.10 Further Reading

The techniques of model fitting and multi-dimensional model fitting are covered in
many books. A book that many have relied on for many years is Bevington (2002),
which we have referred to in several other chapters. Probably the definitive practical
explanation, with detailed code listings, is “Numerical Recipes” by Press (2007).
This is a deep well of information for anything to do with Scientific Computation.
There is also a good website, and associated online e-book which is free as long
as you read a limited amount each month. Another very practical book with code
examples, which again is much broader than model fitting, is Ivezic et al. (2014).
This is aimed at astronomers, but in fact is very useful for a wide range of scientists.
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The differences between joint, marginal, and conditional errors for multi-
parameter fits, how they depend on whether the parameters are correlated, and the
importance of the distinction between “interesting” and “uninteresting” parameters,
has been a notoriously confusing area for many years, for both students and working
scientists. Within my own (astronomical) career, the first research paper to really
stress these points clearly was Avni (1976), and the definitive statements are as usual
in Press et al. (Numerical Recipes). Most researchers do now get these things right.
I think part of the historic difficulty was because arriving at the right answer using
χ2 and significance-based thinking was a little on the brain-bending side; once you
think in terms of a multi-variate posterior probability distribution, it all seems fairly
obvious.

10.11 Exercises

10.1 A model involves two parameters p and q. Priors have been assigned, exper-
imental data obtained, and the posterior probability surface calculated. The peak of
the posterior probability surface is found to be at p = 19.7, q = 23.4. A Gaussian
approximation to the surface gives the covariance matrix

(
9.7 0.0
0.0 16.3

)

Are the parameters correlated? What is the 90% conditional error range on p?
What is the 90% joint error range on p?

10.2 Amodel involves two parameters a and b. Analysis of experimental measure-
ments gives a posterior probability surface, for which the 1 − σ contour is shown in
Fig. 10.5. By eye, estimate the full joint error range on a.

10.3 For a four-parameter fit, what multiple of the conditional error gives the full
joint error? What Δχ2 does this correspond to?

10.4 In Problems 9.2 and 9.3 we examined the correlation between maths, physics,
and art test marks obtained by a sample of schoolchildren. (The table of data can
be found in the Chap.9 exercises.) When regressing the physics marks on the maths
mark, a fit was found of the form y = a + bx with a = 4.276 and b = 0.658. Taking
the maths mark as the independent variable, and the physics mark as the dependent
variable, and taking the typical error on the physics marks to be σ = 5, calculate the
χ2 for this fit. Suppose instead σ = 3.5. Re-calculate the χ2. What is the quality of
the fit in these two cases? What general lesson does this hold?

10.5 An astronomer measures the X-ray spectrum of a quasar in 9 energy channels
and fits the data with a simple power law model, with just the power-law slope as
a free parameter, and gets a fit quality of χ2 = 12.6. A rival astronomer fits the
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Fig. 10.5 One sigma
contour of posterior
probability for Problem 10.2

same data with a more sophisticated model that involves fitting the temperature, the
density, and a Comptonisation parameter, and gets χ2 = 4.8. Using the Δχ2 test,
can the second astronomer definitely conclude they have a better model?

10.6 Try comparing the two models from the problem above using the F-test. Do
we get the same answer?

10.7 A scientist fits a dataset with a model that has 15 parameters, using the χ2

method. The resulting χ2 surface can be approximated as a multi-dimensional Gaus-
sian, where in each dimension, after suitable re-scaling, the width of each 1D Gaus-
sian is given by σ . If we want to reach 95% confidence, what multiple of σ do we
need to go out to?
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Part IV
Selected Topics

Probabilistic reasoning is at the core of physics, and indeed is central to modern sci-
ence in general.We have seen examples frommany areas of physics and astronomy as
we stepped through the basics of probability, examined how probability distributions
arise in the natural world, and developed the techniques of statistical inference. To
reduce, analyse, and interpret our data, the concepts of probability are crucial. This
is true for every area of physics. However, there are certain topics where probability
is particularly important, or controversial, or leads to deep insights. We pick four
such areas to look at in the closing part of this book.

The first such topic—Information Theory—isn’t really physics as such, but is
really a different angle on the concepts of probability. However, the Information
Theory way of looking at things is very important for many physics problems, and
also for data analysis. Every well-educated physicist should have a basic grasp. The
second topic—erratic change with time—has long been interesting to physicists, and
has become particularly fashionable recently in my own field of quasar variability,
and somewhat notorious because of its mixed success in predicting the behaviour
of the stock market. The third and fourth topics—probability in quantum physics,
and the concept and interpretation of entropy—are areas of enduring controversy
and confusion. They bring us face to face with some of the deepest issues in natural
philosophy—is theworld really inescapably unpredictable, andwhere does the arrow
of time come from?Wewon’t solve these difficult problems in this book, but looking
carefully at how probability works in quantum physics and in statistical physics, I
hope some bright students will be armed to solve them for us some time soon!



Chapter 11
Information, Uncertainty, and Surprise

11.1 Outline of Content

• Measuring uncertainty/information
• Binary search games
• Uncertainty associated with probability distributions
• Messages and alphabets
• The Maximum Entropy Principle

In writings about current affairs, culture and politics, we often hear that we live
in the “Information Age”. This phrase seems to be about computers, the Internet,
connectedness, and the ease of exchanging information. On the other hand, if you
open a textbook on Information Theory, it is full of dry stuff about channels, encod-
ing, bits, and efficiency. More puzzling to a physicist, information theory seems to
talk constantly about “entropy”, whereas you thought this had something to do with
thermodynamics, and the dissipation of energy. How do these apparently disparate
things tie together? At its heart, information theory is essentially a mathematical
re-casting of the ideas of probability, but done in a way that gives us new insights.
Just as important, while “information” has a perfectly good but rather broad English
meaning, the definition of information in information theory is a very narrow tech-
nical one. This narrowing of concept is analogous to what happened to the word
“energy” in the development of physics.

We begin this chapter with a fresh look at the concept of probability, and how
it relates to ideas of uncertainty and information. We will start by looking at single
events, then broaden out to consider uncertainty attached to probability distributions.
This will lead us to an understanding of how information theory can be usefully
applied in various places, but especially in the transmission of messages, and in
statistical inference.
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11.2 Probability, Uncertainty, Surprise, and Information

Imagine yourself about to roll a die; we can say that the probability of rolling a 4 is
p = 1/6. When we make this statement, we are using probability as a measure of
the “amount of likeliness”. Another way of looking at the same situation is that we
are uncertain what the number rolled will be. In general, if some possible event has
a probability p of occurring, then the lower the value of p, the more uncertain we
are. Now suppose that the event in question has in fact just occurred. If the event in
question had a low value of p, we will be surprised to see it happen; the larger the
uncertainty before the event, the greater the “surprisal” after the event. Finally, we
can see this surprise as information—when an event that is expected to be rare has
happened, we feel that this tells us a lot, whereas a more likely event is unsurprising
and tells us little. Returning to the before-the-event view, we could say that we are
lacking information that we would need to have in order to remove our uncertainty.
Suppose the die has already been rolled but our friend is covering it up with their
hand. If the friend simply tells us “its a three” then that information would remove all
the uncertainty. If the friend says “its less than four”, then our uncertainty would be
reduced, but not completely removed; and we would agree that we have been given
less information than in the previous case.

Uncertainty and information are then two ways of looking at the same thing—
information is what we would need to supply an observer in order to remove the
uncertainty. Both concepts are clearly closely related to probability. However, uncer-
tainty and information, while useful English words, are rather fuzzy. Can we firm up
their meanings, and get a mathematical relationship with probability? Let us concen-
trate first on uncertainty. Once we have a mathematical definition, then our technical
meaning of information should be quantitatively the same, but with a different inter-
pretation.

11.2.1 A Measure of Uncertainty/Information

Can we come up with a formal definition of “amount of uncertainty” which cor-
responds reasonably to the normal English meaning, but which is mathematically
useful?We need a definition for which uncertainty increases as probability decreases.
The trouble is that there are many potential ways of doing this—we could use 1/p
or 1 − p for example. In fact the standard definition, first proposed by Shannon in
1948, is to use

h = log2(1/p) = − log2 p. (11.1)
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Why is this a good definition to use? To understand this, we need to switch to the
information view of the same quantity. The quantity h = − log2 p tells us the number
of questions you need to ask to solve any binary search problem. Lets look at this.

11.2.2 Quantifying Information: Binary Search Games

Suppose we have 8 boxes. A friend has placed a coin in one of them, and our task
is to find out which box contains the coin, by asking yes/no questions. We might
laboriously ask “is it in box 1?” and then “is it in box 2?” and so on. Sometimes
we would get lucky and find the coin on the first question, and sometimes we would
need 8 questions. Given that the probability of the coin being in any one box is 1/8,
its not hard to see that if we played the game many times, on average we would need
nQ = (1 + 2 + · · · + 8)/8 = 4.5 questions. However, there is a smarter method. We
draw a dividing line between box 4 and box 5, and ask “is it in the lower half?”.
Whatever the answer, we are left with four boxes. We then divide again, to get two
boxes, and then we need only one more question, so that we will always find the coin
after nQ = 3 questions.

In general if we have n = 2k boxes, this “binary search”methodwill succeed after
k questions. For a number n that is not a power of two, there will always be a value
of k such that 2k is less than n but 2k+1 is greater than n. In this case, sometimes
we will need k questions, and sometimes k + 1 questions. For large values of n, the
difference between k and k + 1 is negligible, so to a good approximation, for a n-box
problem, the number of questions we need is nQ ≈ log2 n. Now, the probability of
the coin being in any one box is p = 1/n. We therefore find

nQ = log2 n = log2 (1/p) = − log2 p ≡ h.

We have arrived at our earlier definition of h. For the n-box problem therefore, we
can interpret our uncertainty measure h as the minimum number of yes/no questions
you would need to ask on average to remove the uncertainty. A large number of
problems boil down to, or approximate, the n-box problem, especially in problems
related to computer coding and the transmission of messages. For other problems
which don’t necessarily map onto the n-box problem, h = − log2 p is still a perfectly
good measure of uncertainty to use, even though it’s interpretation as “information”
may be less clear. The quantity h has therefore become the standard definition of
information and uncertainty.

11.2.3 The Units of Uncertainty/Information

Note that we are so far dealing with discrete probabilities, rather than probability
densities. (We will look at how to deal with the continuous case in Sect. 11.3.7).
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The probability p is just a number, so h likewise is just a number. It does not have
physical units. However, within the yes/no question picture, we can attach units of a
sort. The answer to each question in our binary search can be represented by a 1 or 0,
and so the whole answer sequence can be encoded as a binary string—left-left-right-
left becomes 1101 and so on. The quantity h = nQ can therefore be thought of the
number of bits needed to supply the information. To avoid confusion with the actual
bits (binary digits) of storage in a computer system, some workers use “Shannons”
as the units of h. It also common to define variants of h using logarithms to different
bases. If we define he = − ln p, then he is said to be in units of “nats”; if we use
h10 = log10 p, then h10 is said to be units of “bans”. (See “Further reading” for the
explanation of this strange term.)

11.2.4 Combining Uncertainties

Suppose now we have two events A and B, with probabilities p(A) and p(B). As
we discussed in Chap. 1, to get the probability of both events occurring, we need to
know p(B|A), the conditional probability of B happening, given that A has already
happened. Then we find that p(A, B) = p(A) × p(B|A). Now, we can attach an
uncertainty to the event of both A and B occurring, just as we can for event A or B
alone, so that h(A, B) = − log2 p(A, B). Then it is easy to see that

h(A, B) = h(A) + h(B|A), (11.2)

where h(B|A) is the conditional uncertainty (or conditional information, depending
on point of view). Of course if the events are independent, h(A, B) = h(A) + h(B).
The additivity of h is one of the things that encouraged Shannon to pick the loga-
rithmic definition.

11.2.5 Information Theory Terminology

We have been using a technical definition of our quantity h. It is clearly related to
the broader English sense of “information”, in that unexpected events tell us things
that we otherwise didn’t know, and upon which we might act. However, this general
natural language sense of information is receiver-dependent. For example, a data
packet which contains a section of HTML can be understood by a web browser, but
if you sent the same packet to an image analysis programme, it would bemeaningless.
Likewise, a page of Shakespeare and a page of the telephone directory, which take
the same number of bits to express, may be seen by different people to contain quite
different amounts of information. Our technical definition of h on the other hand,
gives a fixed value. For these reasons, I prefer using the term “uncertainty” most
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of the time, so that one can keep the broader sense of “information” available in
discussion.

In information theory literature, h is sometimes referred to as “entropy”, but there
is an argument to be made to avoid this usage, to stay out of the long standing contro-
versial debate about the interpretation of entropy (see Chap. 14). On the other hand
there clearly is a simple connection between the Boltzmann/Gibbs view of entropy,
and the Shannon view of uncertainty/information, as we will discuss in Chap. 14, and
this connection becomes clearer when we talk about probability distributions, rather
than single events. Our solution to these delicate matters will be to use the terms
“uncertainty” and “information” fairly freely, but to avoid the unqualified use of the
term “entropy”, preferring the term “Shannon Entropy” for the uncertainty connected
with a probability distribution, which is what we look at in the next section.

11.3 Uncertainty Inherent in Probability Distributions

Now let us consider a discrete random variable X which has n possible outcomes
Xi , and a probability distribution P(X). The probability of outcome Xi is Pi , and
it has an associated uncertainty h(Xi ) = log2(1/Pi ). Over many trials, with various
outcomes, each with a different associated uncertainty, what will be the average
uncertainty associated with P(X)? What we want is the expectation value of h(X):

H(X) = E[h(X)] = −
∑

i

Pi log2 Pi . (11.3)

Note the capital H , to distinguish this concept from the uncertainty h of a single
event. The quantity H can be referred to as “average uncertainty” or the “expected
uncertainty”, or the “Shannon entropy”. It can be seen as the average number of
yes/no questions you would need to ask to find out which of the n outcomes has
actually occurred, using a kind of probability-weighted binary search. Imagine a
thought experiment where your friend knows which value of i is the actual outcome,
and you are asking questions to find out this value. Rather than simply dividing at
i ∼ n/2, you would use your knowledge of P(X) to find the value of i which divides
the summed amount of probability in half, and then ask whether the outcome is
above or below that. Then you take the successful half, and once again work out
which value of i divides the remaining probability in half, and so on until you have
the actual outcome.

Let us at now look at H in a variety of useful cases.
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11.3.1 Two-Box Experiments: Bernoulli Trials

As described at the beginning of Chap.4, a Bernoulli trial is an experiment which
has a yes/no, either/or outcome, and a Bernoulli process is an ongoing sequence of
such trials. Examples might be coin tosses, or recording whether a radiation counter
detects a particle or not in each one-second time window. We can conceive of any
such experiment as having two boxes, each of whichmay have a differing probability,
e.g. because the coin is weighted, or because the boxes are of different sizes. If box-1
has probability P1 = p for each trial, then box-2 has probability P2 = 1 − p, and we
have defined a very simple two-state probability distribution. Using equation (11.3)
we then find that the average uncertainty for the two boxes is

H(p) = − (
p log2 p + (1 − p) log2(1 − p)

)
.

The function H(p) is plotted in Fig. 11.1. Note that H becomes small for both large
and small values of p. What value of p gives the maximum? Differentiating and
setting dH/dp = 0 we find that we require p = 1 − p, i.e. p = 1/2, to give us
the maximum uncertainty. Note that at this p-value, the two boxes have the same
probability and the maximum value is Hmax = −2p log2 p = 1.0.

11.3.2 Multi-box Experiments

Now let us consider n boxes, with an arbitrary set of Pi values. What distribution
gives us the maximum uncertainty? Imagine first a case where all the boxes except
one are the same: n − 1 boxes have probability p, but the final box has probability

Fig. 11.1 Left: Average uncertainty H(p) for a two-box system, where the probabilities are p and
1 − p. The maximum uncertainty is Hmax = 1.0 at p = 0.5 Right: Average uncertainty H(p) for
the binomial distribution, for various values of of n. The maximum occurs at p = 0.5 in all cases,
and Hmax varies logarithmically with n. The expected maximum given by the formula shown in
Sect. 11.3.4 is shown in each case
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p2. Of course the probabilities have to add up to one, so p2 = 1 − (n − 1)p. Then
we have

H = − (
(n − 1)p log2 p + [1 − (n − 1)p] log2[1 − (n − 1)p]) .

Differentiating and setting dH/dp = 0 you find that

(n − 1) log2 p = (n − 1) log2[1 − (n − 1)p].

The expressions inside the two logs must therefore be equal and so

p = 1 − (n − 1)p = 1 − np + p =⇒ 1 = np =⇒ p = 1/n.

If p = 1/n then we find that p2 = 1 − (n − 1)/n = 1/n so in fact all the probabil-
ities are forced to be the same. We can make the same argument whichever Pi we
choose to make the anomalous one. It is clear therefore that to maximise uncertainty
we must have a uniform distribution. With n boxes each having probability p = 1/n
a little more algebra shows that the maximum value is

Hmax = log2 n for uniform n-box distribution. (11.4)

You may note that the argument we have made here is essentially the same as we
made in Chap.3, Sect. 3.6, when considering partitions. We looked at the number
of microstates per macrostate—the multiplicity—and found that the uniform dis-
tribution is what maximised the multiplicity. It makes sense that we get the same
answer. The more microstates there are that correspond to the same macrostate, the
less certain we will be concerning which microstate the system is actually in.

Any non-uniform distribution will give a smaller uncertainty than the uniform
case. Suppose we take a distribution with four possible outcomes. For a uni-
form distribution, with Pi = 0.25, we find Hmax = log 4 = 2 bits. Now suppose
P1 = 0.5, P2 = 0.25, and P3 = P4 = 0.125. Then we get

H = 0.5 × log 2 + 0.25 × log 4 + 0.125 × log 8 = 1.375 bits.

Another good example might be the experiment of rolling two six-sided dice, and
looking at the total rolled, as discussed in Chap.1, Sect. 1.4.1. There are 11 possible
outcomes (T = 2 through 12). If the 11 outcomes were equally likely, the maximum
Shannon entropy would be Hmax = log2 (11) = 4.46 bits. Using the actual Pi values
for a two-dice experiment (see Fig. 1.1), we find H = 3.27.
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11.3.3 Binomial Distribution

We can compute H for any distribution defined by a mathematical formula. For
example, consider the binomial distribution with number of trials nt , and probability
of success per trial p:

Pi =
(
nt
r

)
pr (1 − p)nt−r , where r = i − 1 and n = nt + 1.

Note that following our earlier conventionwehave n different outcomes running from
i = 1 to n, but when we have nt trials, the number of successes can be from r = 0
to r = nt . For nt = 3, n = 4, a uniform distribution would give H = 2.0, whereas
with p = 1/2 the binomial distribution gives = 1.81. Likewise for nt = 7, n = 8, a
uniform distribution would give H = 3.0, and the binomial gives H = 2.45. A good
approximation is given by

Hnt (p) = 1

2
log2 (2πent p(1 − p)) + O(1/nt ) Binomial uncertainty

(11.5)

where the last term indicates terms of order 1/nt , which of course become negligible
as nt increases. The function H(p) is plotted in Fig. 11.1 for various values of nt .
You can see that p = 1/2 gives the maximum H for any nt , in which case

Hmax = 1

2
log2

(ntπe
2

)
.

There are n = nt + 1 possible outcomes. Larger values of nt make more con-
centrated distributions in relative terms, while being broader in absolute terms, as
discussed in Chap.4, Sect. 4.3, so it makes sense that the the uncertainty increases
with nt but becomes smaller compared to the corresponding uniform distribution.

11.3.4 Poisson Distribution

For a Poisson distribution with mean value μ, it can be shown that

H = 1

2
log(2πeμ) − 1

12μ
+ · · · Poisson uncertainty (11.6)

where the ellipsis indicates higher order terms. We could re-express the binomial
formula in terms of μ = np, and if we let p → 0 we can see that the Binomial and
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the Poisson agree in the limit, as we would expect. Notice that for both binomial and
Poisson distributions it is approximately true that

H � 1

2
log(2πeσ 2).

11.3.5 Bivariate Distributions

If we have two discrete variables X and Y with n and m possible outcomes respec-
tively, and joint probability distribution Pi j , then the joint uncertainty of the two
variables is

H(X,Y ) = −
n∑

i=1

m∑

j=1

Pi j log2 Pi j .

We can illustrate the meaning of this quantity as follows. Imagine an n × m grid of
boxes. A ball is thrown into one of the {i, j} boxes at random, but with probability
given by Pi j . Then H is the average number of yes/no questions you would need to
ask to discover exactly which box contains the ball.

What if we are interested only in the uncertainty in Y ? How do we extract that
from the joint distribution Pi j? Just as with our discussion in Chap.2, Sect. 2.3, there
is more than one waywe can ask that question. Suppose we already know the X value
Xi . Then what we want is to examine the conditional distribution g(Y ) = gi ( j) as
in equation (2.1), and extract the uncertainty from that distribution:

Hi = H(Y |Xi ) =
m∑

j=1

gi ( j) log2 gi ( j), where gi ( j) = Pi j∑m
j=1 Pi j

. (11.7)

We will refer to this as the specific conditional uncertainty. Now imagine running
this experiment many times, each time with a different Xi . What is the probability
of a given Xi? This will be given by the marginal distribution for X , as in equation
(2.2). Then the average conditional uncertainty for Y is the expectation value of Hi

over the probability distribution f (X):

H(Y |X) =
n∑

i=1

Hi f i, where f (i) =
m∑

j=1

Pi j . (11.8)

Finally, the marginal uncertainty for Y can be found by calculating the uncertainty
attached to the the marginal distribution g(Y ):
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H(Y ) = −
m∑

j=1

g( j) log2 g( j), where g( j) =
n∑

i=1

Pi j . (11.9)

We can illustrate themeaning of these quantities by extending our thought experiment
of throwing a ball into the n × m grid at random. H(X,Y ) is the average number of
questions you need to ask to pin down which grid-box the ball is in, if you have no
other information. The marginal uncertainty H(Y ) is the number of questions you
have to ask to pin downwhich Y -row the ball is in, if you don’t care which X -column
it is in. Next, imagine your friend taking a peek and telling you “the ball is somewhere
in column i = 6”. Then the specific conditional uncertainty H(Y |Xi ) is the average
number of questions you would need to ask to pin down the Y position, given that
specific piece of information. Finally, if you imagine running the experiment many
times, with your friend telling you each time what the i position is, then the average
conditional uncertainty H(Y |X) is the number of questions you need to ask to pin
down the Y position, averaged over the many runs of the experiment.

11.3.6 Mutual Information: Testing Dependence

If our two variables X and Y are independent, then their probability distribution can
be written Pi j = fi g j where f and g are the marginal distributions for X and Y .
Then the joint uncertainty can be written as

H(X,Y ) = −
n∑

i=1

m∑

j=1

fi g j
(
log2 fi + log2 g j

)

= −
∑

i

∑

j

fi g j log2 fi −
∑

i

∑

j

fi g j log2 g j .

Looking at the definition of marginal uncertainty in equation (11.9), if we have
Pi j = fi g j , we can see that the two terms above are identical to H(X) and H(Y )

respectively. So for independent variables, the joint uncertainty is equal to the sum
of the two marginal uncertainties. More generally, this will not be the case. This
provides us with a simple numerical test of independence. We can define theMutual
Uncertainty or more usually in the literature, the Mutual Information:

I (X,Y ) = [
H(X) + H(Y )

] − H(X,Y ). (11.10)

For independent variables, I = 0; for dependent variables, I > 0. Noting that
H(X,Y ) = H(X) + H(Y ) − I (X,Y ), we can interpret the situation as follows: our
uncertainty in the X,Y position of our imaginary ball is determined partly by the
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uncertainty in X , i.e. H(X), and partly by the uncertainty in Y , i.e. H(Y ). However,
if the uncertainty in Y is connected to the uncertainty in X , then if we add H(X) +
H(Y ) we have overestimated the total uncertainty in X,Y , by the amount I (X,Y ).
It’s not too hard to show that it is also the case that I (X,Y ) = H(Y ) − H(Y |X)—
i.e. it is the remaining uncertainty in Y after you have taken account of the average
uncertainty caused by X . Likewise, of course, I (X,Y ) = H(X) − H(X |Y ).

11.3.7 Continuous Distributions

So farwe have considered discrete randomvariables.Whenwe look at the uncertainty
associated with continuous random variables, we hit a problem. Suppose we consider
a small rangeΔx of a continuous randomvariable x , andfind an amount of probability
Δp within the range. if we decreaseΔx , thenΔp also decreases, but the ratio p(x) =
Δp/Δx converges, which enables us to define a probability density function. Can
we likewise define an uncertainty density function h(x)? We could attempt this by
looking at the amount of uncertainty Δh associated with the range Δx , and taking a
limit:

Δh = log2

(
1

Δp

)
= log2

(
1

p(x)Δx

)
, h(x) = lim

Δx→0

Δh

Δx
.

However unfortunately, as Δx gets smaller, Δh gets larger, so the uncertainty
diverges. Suppose however we ignore this and plunge ahead trying to calculate an
expectation value for the uncertainty associated with the whole PDF p(x). The tech-
nique is to take a discretised version and then take the limit. We therefore consider
N samples pi , separated by distance Δx , so that the amount of probability in each
range is Δpi = piΔx . Then the uncertainty connected with each range is

Δhi = log2 (1/Δpi ) = − log2(piΔx) = log2 pi − log2 Δx .

Then the discretised estimate of the average uncertainty H is

Ĥ =
N∑

i=1

−pi log2 pi − N log2 Δx,

and finally, taking limits, we have

H = lim
Δx→0

Ĥ = −
∫

p(x) log2 p(x) dx + ∞. (11.11)

We now simply ignore the second term (infinity), and identify the first term as the
continuous equivalent of the average uncertainty, often known as the Differential
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Entropy. Interestingly, it is of course exactly what you might have naively assumed
to be the expectation value of uncertainty. The trick of producing an infinity and then
subtracting it is a favourite trick of physicists; in quantum mechanics it is known as
“re-normalisation”.

One can now apply this formula to our favourite continuous PDF, the Gaussian.
The result found is that

H = 1

2
log(2πeσ 2) Gaussian uncertainty (11.12)

Comparing thiswith Sect. 11.3.4we can see that this result is the same as theBinomial
and Poisson in the limit of large μ, which at least somewhat vindicates the dubious
practice of subtracting an infinity.

11.3.8 Comparing Distributions

It can often be useful to compare the H values given by two different distributions—
for example when looking at the efficiency of a message encoding system, as we
will examine in the next section. For the purpose of discussion, let us assume we are
considering a k-box system, with different probability distributions Pi and Qi , with
the special case of a uniform distribution labelled as Ui = 1/k. The corresponding
uncertainties are HP , HQ and HU . As we have seen HU = log2 k, and HP and HQ

will always be smaller.
The simplest comparison between P and Q would be to take the ratio HP/HQ . If

we compare to the uniform case, then R = HP/HU = HP/ log2 k could be seen as
the “efficiency” of P , i.e. how close it comes to the uniform case, so that R is a number
between 0 and 1. Alternatively, as H is a logarithmic quantity, it may seem more
natural to take the difference, HP − HQ , which has units of bits. Then comparing
to the uniform case ε = HP − log2 k can be seen as measuring how many bits P
is from the uniform case. However, the standard method for defining the “distance”
between two distributions is a little more subtle. First, we define the cross entropy
between P and Q:

H(P, Q) =
∑

Pi log Qi .

This is the expectation value for Q, but using the probability distribution for P . You
could see it as the entropy you get if you use an “alien” probability distribution Q
rather than the “true” distribution P . We can then characterise how far we are from
the true HP by defining what is known as the Kullback–Leibler distance of Q from
P:

DKL(P||Q) = H(P, Q) − H(P) =
∑

Pi log
Pi
Qi

. (11.13)
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Sometimes this quantity is known as the “KLdivergence” rather than theKLdistance.
Note the asymmetry in the definition—what we have is the divergence of Q from
the ideal distribution P . If we compare to the uniform distribution then you can see
that

DKL(U ||Q) = k −
∑

Pi log Qi .

11.4 Messages, Alphabets, and Data Compression

Shannon constructed his definition of information/uncertainty/entropy as part of his
development of communications theory. How do we pass messages most efficiently?
To answer this question,weneed to understandhowmuch information amessage con-
tains. Rather than thinking about specific individual messages, it helps to think about
classes of message, and what the structure is for that class of message (Fig. 11.2).

In the Shannon picture, transmitting amessage consists of several standard stages.
(i) We split the message into a sequence of symbols. (ii) We encode each symbol
as a binary string. (iii) We transmit the codewords through a channel with some
fixed capacity in bits per codeword. (iv) During transmission, noise may be added,
corrupting some of the codewords. (v) The arriving codewords are then decoded to
reveal the message at the other end.

We can now look at each of these concepts more carefully. For the purpose of
brevity however, we are going to ignore noise, assuming perfect transmission through
the channel.

Fig. 11.2 Standards steps in the process of encoding, transmitting, and decoding messages. See
text for details
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11.4.1 Messages and Alphabets

Any message, or more generally any data structure, can be seen as a sequence of
symbols S, each of which is chosen from an alphabet of k possible symbols, Ai .
The message might for example be a piece of text in the English language, with each
symbol being one of the 26 letters of the Western alphabet (or a few more symbols,
including spaces, commas, and so on). Alternatively, we might be transmitting an
image made up integer pixel values. If we run the rows together one after the other,
we can think of this as a long message, where each symbol represents a pixel value
as a number between, say, 0 and 256. The symbols will in general not appear with
equal frequency in our message; we could describe their relative frequency for a
particular class of message by a probability distribution for that alphabet, Pi . That
alphabet will then have an associated average uncertainty or Shannon entropy

H = −
k∑

i=1

Pi log2 Pi .

So, if we were transmitting a sequence of numbers representing the rolls of two dice,
we would have H = 3.27 as discussed in Sect. 11.3.2. For the case of transmitting a
message in English, the distribution Pi is given by the empirically found frequency
distribution of letters in English text. (See for example the table in Stone, page 60).
We then find that you expect H = 4.11. For an image, the frequency with which
different grey-levels occur may vary quite a lot depending on what sort of image
we are transmitting. If all the numerical values between 0 and 256 occurred equally
often, we would have H = 8.0, but in practice the observed H will be much less.
These various H values tell us the amount of information per symbol we would in
principle gain from decoding a message.

11.4.2 Codes, Channels, Compression and Efficiency

In order to transmit themessage, or the image orwhatever,wewould normally encode
the symbols in some binary fashion, to turn them into a sequence of codewords. For
example, we could use theUnicode standard to express each text character as a binary
number. Allowing for space and say 7 punctuation characters, we have 34 options,
so that we would ideally need 6 bits per symbol in our codewords. (Or more if we
double up for capitals). Likewise, we could express our image pixel values as 8 bit
numbers, so needing 8 bits per symbol.

The term “channel” sounds like a physical pipe, but in practice refers to the fixed
practical arrangements for transmitting the codewords. For example, we may take a
decision to put our data into a sequence of computer words that are 1 byte long, i.e.
8 bits. The word size of 8 bits is then the capacity of our channel—C = 8.0 bits. But
if ideally we only need, say, 6 bits per codeword to express all the symbol options,
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then we are wasting some space in our fixed-size channel codewords. Suppose for
example our message is made up of only four symbol options, that occur with equal
frequency—A, B, C, D. Then with just 2 bits, we can encode these as A = 00, B =
01,C = 10, D = 11. However suppose instead we have five options—A, B, C, D, E.
Two bits is not enough to express these, so we will need to use three bits. A codeword
of that size can express eight possibilities, so three of the possible codewords will
never be used. In principle our messages have Shannon entropy/information content
per symbol of Hsym = log2 (5) = 2.32, whereas our channel capacity is C = 3.0.
Our encoding can be said to have an efficiency of R = Hsym/C = 2.32/3.0 = 0.77,
or to be wasting ε = C − Hsym = 0.68 bits/symbol.

However, our encoding doesn’t have to be a one-to-one mapping from symbols
to codewords. For example, we could take the symbols three at a time, so that the
possibilities are AAA, AAB, AAC..., with 125 options for these newmulti-symbols.
Note that if the original symbols A, B,C, D, E occur with equal frequency, then our
125multi-symbols will also occur with equal frequency. The Shannon entropy for the
new alphabet of multi-symbols will therefore have Hsym = log2 (125) = 6.92. We
can encode the multi-symbols into 7 bit codewords, which allows for 128 possible
options. So now the channel capacity is C = 7.0 and the entropy of the messages is
H = 6.92, giving a much improved efficiency R = 6.92/7.0 = 0.989. This packing
of symbols three at a time is a simple example of lossless compression.

Of course most messages will have symbols that come from an alphabet that does
not have a flat Pi distribution. Then even if we pack multiple symbols together, the
efficiencymay be poor. The distribution of English characters is an obvious example.
Our 6 bit codewords have channel capacityC = 6.0; a flat distribution of 34 symbols
would have H = 5.1; but as we discussed above, the actual Shannon entropy of
English text has roughly H = 4.1. Likewise, for an 8-bit image, an image with
extreme contrast, where there might large patches of pure black and large patches of
purewhite,might have H much smaller than the channel capacityC = 8.0. However,
there are cleverways to encode the symbols. For a large rangeof problems, the optimal
method isHuffman coding, which, roughly speaking, involves frequency-sorting the
symbols and arranging them into a binary tree for optimal packing. One of the key
aims of Shannon’s original 1948 paper was to show that in principle some coding
always exists which can bring you arbitrarily close to the channel capacity.

11.4.3 Messages with Mutual Information

In all the discussion above, we have assumed that the symbols are independent. In
practice this is often not the case. For example, in English text, the probability that
a given symbol will be u is strongly dependent on the previous symbol. Mostly, the
letter u occurs with quite low frequency, but if the previous letter was q, then getting
a u next is very likely indeed. Successive symbols S1, S2 have a very high degree of
mutual information I = h(S1) + h(S2) − h(S1, S2). Of course the situation is even
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more complicated, as patterns of letters are very common. Dealing with such mutual
information is beyond our goals here, which is simply to understand the general
principles of information theory.

11.5 The Maximum Entropy Principle in Statistical
Inference

How do we calculate or assign the appropriate values in a probability distribution?
The traditional method, which we followed in the first two parts of this book, is to
first identify elemental events which we believe to be equally probable, and then to
recognise other situations as compound events made up of the elemental events. So
for example, we assume that in rolling a single die, each face has a probability of
1/6, and it is then simple to calculate the probability of rolling two dice giving a
total T (see Sect. 1.4.1). In assigning the elemental events equal probability, we are
applying what Laplace referred to as the “Principle of Indifference”. We employed
the same principle when using Bayesian techniques and assigning prior probabilities.
For example if we are testing a coin which we think may be biased, and have no
reason in advance to suspect which of heads or tails might be biased, we assign
them both equal prior credibilities/probabilities. Finally, when considering particle
distributions in Chap. 3, we assumed that our systemwas ergodic, i.e. spending equal
amounts of time in each microstate. This is really just a variant of the principle of
indifference.

Starting with Jaynes during the 1960s (see Jaynes 2007), a number of scientists
have raised the idea of maximising uncertainty, i.e. the Shannon Entropy, as a similar
kind of logical principle—either that Nature tends to arrange itself into a form where
we have the least knowledge, or that in making logical inferences, we should do so
in a way that makes the fewest unjustified assumptions. This idea is known as the
Maximum Entropy Principle, and techniques using this idea are said to be using the
Maximum Entropy Method, usually referred to as “MEM” or “MaxEnt”. Mathemati-
cally, the Maximum Entropy Principle is more or less the same thing as the Principle
of Indifference, but it gives things a different philosophical spin.

11.5.1 Shannon Entropy and Macrostate Multiplicity

In Chap.3, Sect. 3.6, we looked at partitions, taking distributions of particles in space
or energy as an example. The way we approached such problems was to calculate
the multiplicity W of a macrostate, i.e. the number of microstates corresponding to
the same macrostate. If we apply the principle of indifference by assuming each
microstate to be equally probable, then the most probable macrostate is the one with
the largest W . We showed that a uniform distribution maximises W , unless there is
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some additional constraint, such as the total energy of all particles being constant.
Another way to look at the idea of maximising multiplicity is that the macrostate
with the largest multiplicity will be the one that gives us the least information about
exactly whichmicrostate the system is actually in; maximisingW will alsomaximise
uncertainty.

In fact, this idea—that maximising W and maximising H should be closely
connected—leads directly to the Shannon expression for entropy. We start by repeat-
ing equation (3.5) for convenience:

W = n!
n1!n2!...nk ! .

Here, k is the number of “boxes” in our partition, n is the total number of particles,
and ni is the population of the various partition boxes. Next we note that maximising
W will be the same as maximising logW , and we use the Stirling approximation
from equation (3.4), log n! ∼ n log n − n. Assuming that n is sufficiently large and
dropping the approximation sign, we get

logW = log n! −
∑

log ni !
= n log n − n −

∑
(ni log ni − ni )

= n log n −
∑

ni log ni ,

where we have used the fact that
∑

ni = n. Now, for a given particle, the probability
of being in box i will be Pi = ni/n. Writing logW in terms of the Pi values, we get

logW = n log n
∑

nPi log nPi

= n log n − n
∑

Pi (log n + log Pi )

= n log n − n log n
∑

Pi − n
∑

Pi log Pi

= −n
∑

Pi log Pi

= −nH.

So apart from a scaling factor (noting that above derivation is in natural logs rather
than logs to the base 2), the log of multiplicity is essentially the same thing as
the Shannon entropy. This is a strong argument for the Shannon expression for
uncertainty, − log2 p, rather than for example 1 − p or 1/p.

11.5.2 Using Uncertainty/Entropy to Choose Priors

As we discussed several times in Chaps. 7, 8, and 10, Bayesian logic does not tell us
how to choose prior probabilities. Personally, I find this a strength of the approach.
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You have to make a initial subjective judgement; the use of priors forces you to make
your assumptions explicit.Whenyouhave lots of data, the choice of priorsmakes little
difference.Whenyouhave less data, different priorswill give youdifferent answers—
but this is a good thing. Again, it brings the inevitable biases and subjectivity out
into the open and gives you a way to discuss them. Nonetheless, there is a desire to
find a way to make choosing priors rigorous and in some way more objective.

The principle of indifference is the traditional starting point. If we have k different
hypotheses that have various prior probabilities πi , and have no reason to prefer
one hypothesis over another, we should set them all to πi = 1/k. Maximising the
uncertainty/Shannon entropy H = −∑

πi logπi gives the same answer, as we saw
in Sect. 11.3.2. If we have a parameter θ defined over some finite range θmin to θmax,
then we can maximise the “differential entropy” from equation (11.11), which gives
a prior probability density of π(θ) = 1/(θmax − θmin).

Things get more interesting if we can add further constraints. Suppose we have k
evenly spaced possible values of θi = θmin + iΔθ , with the corresponding prior prob-
ability being πi . We can then maximise H given the additional constraints using the
Lagrange multiplier technique of Sect. 3.8.2, taking each πi value as a variable. The
simplest constraint is the normalisation of the probability distribution,

∑
πi = 1.0,

which we express as g1(π1, π2..) = 1 − ∑
πi . This gives the uniform distribution

as a solution. However, we might for example know the mean value of θ , μθ . If we
maximise H with the additional constraint g2(πi , π2, ..) = ∑

πiθi − μθ , it can be
shown that the solution we get is exponential in θ , i.e. π(θ) ∝ e−θ . Of course, this is
exactly analogous to the problem we considered in Sect. 3.8.1, where we constrain
the total particle energy, or equivalently, the mean particle energy, as the total num-
ber of particles is fixed. Finally, suppose we know not just the mean but also the
variance of θ , σ 2

θ . The shape which maximises the Shannon entropy under all three
constraints of normalisation, mean and variance is theGaussian distribution with the
same values of mean and variance.

11.5.3 Image Restoration

A very popular use of MEM in data analysis is the derivation of the “best” image,
given noisy and blurred data. The problem is illustrated in Fig. 11.3. Herewe simplify
the situation by considering a one-dimensional image with just six pixels. The true
brightness distribution as a function of x is f (x). This is not necessarily character-
isable as a simple mathematical function with a few parameters—it is a completely
arbitrary curve, representing for example the brightness in a scene at different spatial
positions, or the flux versus wavelength in a spectrum. We then measure the bright-
ness at discrete points, resulting in the data points shown. As well as sampling f (x),
these data points will have added measurement errors; furthermore, rather than sam-
pling the true f (x), the measurements may be sampling h(x) = f (x) ∗ g(x), the
convolution of f (x) with the instrument resolution g(x).
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Fig. 11.3 A simple one-dimensional “image” with six data points, and variety of possible true
brightness distributions consistent with the data points and their errors. It seems instinctively rea-
sonable that the thick black line is the most sensible solution, because it is the smoothest of the
curves consistent with the data

All the curves shown in Fig. 11.3 (except for the horizontal dashed line, which
we will come to shortly) are consistent with the data points, in the sense that they
would give reasonable χ2 values. The difficulty is that there are infinitely many such
curves; the problem is severely underconstrained. One solution would be to propose
some parametric form for the underlying f (x), and fit the parameters, following the
methods of Chap.10. However, there is no good physical basis for choosing such
a parameterised form. How then do we choose which curve is best? Instinctively,
we feel that the dotted curve is not a sensible solution; we have no evidence for the
extreme bumps and wiggles suggested; the thin black line is better, and the thick
black looks best. What the eye is doing is preferring the smoothest curve consistent
with the data.

MEM formalises these instincts, arguing that we should pick the curve that makes
the fewest unjustified assumptions, and that this is best quantified by the average
uncertainty or Shannon Entropy. But what do mean by the entropy of an image, as
opposed to the entropy of a probability distribution? The trick is to imagine a fine-
scaled discretisation. First we divide x into a series of cells at positions xi , where
the true brightness value is fi (xi ). This discretisation can be finer than than the data
pixels, and as fine as we like in order to approximate a continuous curve. Next, we
likewise make a fine discretisation of the brightness using “quanta” of size δ, so
fi = niδ. Then the ni can be seen as the populations of the cells. Informally we
could think of the quanta as the “photons” that make up the image, although this
need not literally be the case.

The total number of quanta is n = ∑
ni . Imagine taking these one at at time, and

throwing them at random into the k cells. Then the probability that cell i will have
number ni is Pi = ni/n. We then define the entropy of the image in the usual way
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as H = −∑
i Pi log Pi . If we then simply maximise H this will give a completely

uniform image, as in the dashed line of Fig. 11.3. However, this does not agree with
the data points. Given a trial curve f (x)we can quantify the agreement with the data
as normal using χ2. The simplest procedure is to require that a good fit has χ2 = N
where N is the number of data points. We can then use the Lagrange multiplier
technique, with g1 = ∑

Pi − 1 and g2 = χ2 − N . We then have k + 2 simultaneous
equations to solve in order to find f (x) to the required fineness of scale we have
decided upon. However, note that k may be very large indeed; images may have tens
of millions of pixels, and we would often choose to use a discretisation several times
finer than the pixel scale. Using MEM is therefore computationally expensive.

As we noted in Sect. 11.5.1, maximising entropy is really about maximising
multiplicity. Returning to our n quanta, the set of values ni could be seen as the
“macrostate” of the image, and the specific locations of the n quanta as the various
“microstates”. Then there are W different ways of achieving a given image f , with
W given by (3.5) as usual. Next, we can apply Bayes’s theorem:

P( f |D) ∝ π( f ) L(D| f ).

The best choice of prior π( f ) is the one that corresponds to the macrostates with the
most microstates. Taking logs, and applying Stirling’s approximation again, we find
that log P ∝ H − χ2. We then need to simultaneously maximise both the entropy
of the finely gridded fi (xi ) and the fit with the measured data points.

11.6 Key Concepts

Some of the key concepts from this chapter are:

• The subtle relationships and differences amongst probability, information, uncer-
tainty, and surprise

• The idea of information as the number of binary search questions needed to remove
uncertainty

• How to combine uncertainties, and the idea of mutual information
• The idea of the average uncertainty or Shannon entropy associated with a proba-
bility distribution

• The idea of messages and alphabets, and the Shannon entropy associated with a
message

• The importance of message entropy in data compression
• The connection between maximising entropy and maximising multiplicity
• The idea of using maximum entropy to choose priors
• The use of maximum entropy in image restoration

Key formulae in this chapter include: the definition of the uncertainty connected
with a probability (11.1); the formula for combining uncertainties, allowing for con-
ditional uncertainty (11.2); the definition of the average uncertainty/ Shanon entropy
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connected with a probability distribution (11.3); the formulae for the uncertainty
of a uniform n-box distribution (11.4), for a binomial distribution (11.5), and for a
Poisson distribution (11.6); for a bivariate distribution, the formulae for specific con-
ditional uncertainty (11.7), average conditional uncertainty (11.8), marginal uncer-
tainty (11.9), and mutual information (11.10); the general formula for differential
entropy (11.11), and its value for the Gaussian distribution (11.12); and the definition
of the Kullback–Leibler distance between two distributions (11.13).

11.7 Further Reading

There are many good textbooks covering information theory at a variety of lev-
els. Three that I like are Stone (2015), which is very clear and simple; Applebaum
(2008), which has a nicely unified approach to probability theory and information;
and MacKay (2003), which is very thorough and rigorous. In particular in MacKay
you will find a thorough treatment of noise, which I rather skimmed over in this
chapter. You will also find clear treatments of various issues in the explanatory intro-
ductions to various sections of Press et al. (2007). MacKay also has many amusing
touches and historical details. Amongst other things, he explains how the use of
the term “ban” to represent factors of ten in information stems from the wartime
code-breaking work of Turing and others at Bletchley park, which used specially
printed sheets of paper printed in Banbury. The code-breaking task was known as
“Banburismus”. Although David MacKay has now sadly passed away, his research
group maintains his web pages.

The ideas of communication/information theory were swirling around for many
years, and had precursors in the work of Gibbs, Nyquist, Tukey, Hartley, von Neu-
mann, and Wiener. However, the famous paper by Shannon (1948) really did crys-
tallise all the key issues. The paper was first published in the Bell Systems Technical
Journal, but was very quickly re-published in book form together with a very interest-
ing and readable introduction byWeaver. This book has been re-issued and reprinted
many times, e.g. Shannon (1998).

The idea of using maximum entropy in image restoration and related problems
started with Frieden (1971), and ballooned quickly from the 1980s onwards. A inter-
esting set of essays can be found in Buck and MacAulay (1991) and an early appli-
cation to astronomical images in Willingale (1981).

There is an amusing story about howShannon chose to call hismeasure “entropy”,
recounted in Tribus and McIrvine (1971). He originally wanted to call it “uncer-
tainty”, but Von Neumann told him “entropy” was a better idea, partly because his
uncertainty function was already used in statistical mechanics under that name, but
mostly because no one knows what entropy really is, so in a debate he would always
have the advantage. As we will discuss in Chap.14, thermodynamic entropy can in
fact be seen as a specialised version of the more general Shannon entropy.
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11.8 Exercises

11.1 What is the uncertainty attached to a single roll of a six sideddie (a) inShannons,
(b) in bans?

11.2 A card is picked from a standard pack of playing cards. What is the uncertainty
attached to (a) drawing a spade? (b) drawing an Ace? (c) drawing the Ace of Spades?
Check that h(c) = h(a) + h(b).

11.3 A biased coin has a 60% chance of landing on heads. What is the Shannon-
entropy per coin-flip? How badly biased would the coin need to be to have H = 0.5?

11.4 Show that the formula for the maximum H for a binomial distribution for a
given n agrees with the expression for H for the Gaussian distribution, given the
variance of the Gaussian.

11.5 A particle created in interactions at a new particle collider can be described by
two quantum numbers Q1 and Q2, each of which can be either positive, negative,
or zero. The values following a given collision are random, but with some bivari-
ate probability distribution. Three different theoretical models claim to predict these
probabilities. The calculations are complicated, but a number of simulations using
each model give a distribution of results as in Fig. 11.4. Use these to calculate the
corresponding probability distributions, and for each distribution calculate the joint
uncertainty, the marginal uncertainties, and the mutual information. By assigning
numerical values to positive/negative, also calculate the covariance of each distribu-
tion. What do these calculations show about the difference between dependence and
correlation?

11.6 Supposewe are repeatedly rolling a six sided die, and transmitting the sequence
of results as a coded message. The computer system we are using forces us to to
transmit using words which are multiple of 4 bits long. With 4 bit codewords, what is
the coding efficiency of our message? How could we go about improving our coding
efficiency?

Fig. 11.4 Frequency distributions for the two quantum numbers, calculated for the three different
theoretical models. (See Exercise 11.5)
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Chapter 12
Erratic Time Series

12.1 Outline of Content

• Stationary and non-stationary processes
• Practical difficulties characterising observed erratic time series
• Characterising time series using the structure function, autocorrelation, and the
periodogram

• Moving Average processes
• Autoregressive processes
• Poisson processes and shot noise
• Conceptual differences in continuous random processes
• Stochastic differential equations and how to solve them
• The Ornstein–Uhlenbeck process and related processes
• Markov chains

A time series is a sequence of values of some quantity in time—for example
the day by day changes in stock market values, or the flickering brightness level
of a quasar, or the “shot noise” seen in electronic components. Such time series
x(t) can have a mixture of deterministic and stochastic elements, which leads to
a fascinating variety of appearances. Figure12.1 shows four simulated examples.
Top left shows a secular trend, an evolution with time that is purely deterministic.
The usual method of analysing such a situation is to find a differential equation that
will reproduce the trend x(t). Top right on the other hand shows a sequence that
is purely random. Each data value x is drawn independently from some probability
distribution p(x). The remaining two examples are partially random. Bottom left is
an example of a random walk, as discussed in Chap.6. The key characteristic is that
the neighbouring points are strongly correlated, but well separated points are more
or less independent. At bottom right we see what is often known as flicker noise.
Like the random walk, it seems to be a kind of semi-random drift, but the degree
of correlation between neighbouring points is weaker. By eye, it seems intermediate
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Fig. 12.1 Simulated time series. Top Right: Purely deterministic series calculated from a simple
equation.TopRight: Purely random noise. Each point is independent and is drawn from a Gaussian
PDF with μ = 10, σ = 2. Bottom Left: A random walk in one dimension. Generated with a fixed
step size in x and a random choice of increasing or decreasing at each time step. Bottom Right:
Flicker noise. Simulated using an autoregressive process with μ = 0, σ = 0.5, and α = 0.95 (see
text for an explanation)

between a purely random process and a random walk. This kind of flicker noise is
very common in Nature. How do we explain it? Before we attempt that question, let
us consider how to objectively characterise a given time series.

12.2 Characterising Time Series

A time series is essentially an ordered list of sample values. The process itself x(t)
may be discrete or continuous in either x or t . We will assume for now that the x
values are continuous. In time, the physical process may be intrinsically discrete,
producing a sequence of values xi—for example daily stock prices. Alternatively
the process x(t) may be intrinsically continuous, but our measurements sample the
values at a set of discrete times ti . The sample data series is therefore always a
sequence of values xi . In much of this chapter, we will write the sequence of values
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as xt , understanding that in fact t takes a series of values t1, t2, . . .. Note that the
sequence of times ti may not necessarily be uniformly spaced, but for simplicity we
will assume that they are. Given the random element involved, no physical model
will correctly produce a specific sequence xt . This situation is much the same as
attempting to describe any set of sample values of a random variable x—it’s just that
the set of sample values xt are ordered in time, so we have to explain the pairs ti , xi .
The time ordered plot of sample values xt as a function of time ti , such as we see in
Fig. 12.1, is often known as a sample path.

When considering unordered sample values in Chap.2, we discussed how to pro-
duce descriptive numbers from the probability distribution for x—the mean, the
variance, the skewness etc. Those characterising numbers, rather than the values xt
themselves, are then the targets for physical theories of the process to explain. Can
we produce similar characterising quantities that capture the time-ordered behaviour
of our erratic time series in a statistical sense? Such quantities can be used as a
test for theories, but also can be used empirically to describe and separate one data
series from another. We will look at three different methods—growth of variance,
autocorrelation, and periodogram analysis.

First however, we examine the question of whether a time series has a consistent
statistical behaviour at all.

12.2.1 Stationary and Non-stationary Processes

The simplest way to characterise a time series is ignore the time axis and con-
struct the sample distribution of data values, P(x). From this we can derive the
usual moments—mean, variance, skewness, kurtosis etc. But do we get a consistent
answer? Imagine taking a section of the time series in Fig. 12.1, with some starting
value x0 at time t0, and continuing for some duration of time. A secular trend such as
that in the top left of Fig. 12.1 will look different depending on the starting time of
our section. The absolute value of time matters. For the other examples in Fig. 12.1,
although the exact sequence of values xi will be different for different starting values
x0, t0, in a statistical sense, every section would look the same. Absolute time does
not matter. A process where any slice of time is statistically the same is known as a
stationary process.

What do we mean by “in a statistical sense”? Suppose that after deciding our
section of time, we construct the histogram of values xi to get the sample probability
distribution P(x). The resulting P(x) would be slightly different each time if we
repeat this process many times with different starting values, but will be consistent
with always being drawn from the same underlying population/parent distribution.
If we were to take longer and longer sections, or equivalently, average together
many such sample distributions (making a so-called ensemble average) then the
result should converge on a consistent answer. We could test the hypothesis that
the sample distributions from two such sections are drawn from the same parent
distribution, using the statistical inference techniques of Part III. On the other hand,
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a non-stationary process would not produce a consistent convergent result. The same
logic could be applied to the other statistical quantities that we will discuss in the
following subsections. Generally speaking, processes with a secular component are
not statistically stationary. For example, a process might be made of a secular trend
with added noise, in which case the process as a whole would not be stationary. A
purely random process could also be non-stationary. For example, a process might
consistent of purely random values, but with the dispersion of the random values
decreasing with time. Quite often, processes in the real world are not intrinsically
stationary, but an idealised stationary process is a good model. For the rest of this
chapter, we assume that we are dealing with stationary processes.

The flicker noises that we consider in this chapter are asympotically stationary—
i.e. they will pass the kind of tests discussed above if our time-section is long enough.
In the next section we will see that “long enough” may be longer than you think.

12.2.2 Growth of Variance and the Structure Function

The characteristic feature of erratic time series is that they tend to drift with time.
Consider Fig. 6.1, where we showed a large number of simulations of a random
walk, starting from the same initial value. The right hand side of the figure shows the
frequency distribution of resulting values at various different times. These values are
reasonably well centred on a mean of zero, but the spread is increasing as the square
root of time. By contrast, the purely random process will show the same spread of
values regardless of the time we wait following the start. Visually, the flicker noise
in the bottom right of Fig. 12.1 seems intermediate in this respect—drifting on short
timescales, and looking much the same on long timescales. This suggests that we
could use the growth of variance with time as a characteristic of a time series.

However, we have to be rather careful how we define the quantity that we are
after. There are three ways we could do this.

Ideally, to understand the process behind our time series, what we want is the
path-to-path variance. Imagine making simulations where we pick a starting value
x0 at time t0, and generate many different sample paths of length t that all finish at
some distant final time t f = t0 + t . Each path produces a different finishing value x f .
From many paths we look at the distribution P(x f ), and get the variance σ(t). This
procedure would give us the variance of our process as a function of path-length.
For a purely random process it will be constant; for a random walk σ(t) ∝ t1/2, and
the process is not strictly stationary. Shortly we shall see what a typical flicker noise
does.

Of course, in the real world, we do not usually have many paths starting from
the same place, but only one observed path sampling our process. Furthermore, the
process is sampled at a set of discrete time steps. If we take a section of length k time
steps, the simplest procedure would be to calculate the within-section variance—
i.e. starting from some initial value x0, we take all the values xi from i = 0 to i = k.
We could then see how the variance σ 2

k grows with section length k. However, this
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mixes together points close in time that will typically be close together with those
further apart in time that will have a larger spread.

The third method of characterising growth of variance using a single sample path
is as follows. We pick a starting value xi at time ti , and compare it to the value k time
steps later, forming Δx = xi+k − xi . The value of k is usually known as the lag. We
then repeat for many different starting times ti , getting many different Δx values.
For a stationary process, the mean value of Δx will be zero, but the variance will
depend on k; our calculation of how this changes with lag k gives us what is known
as the structure function, σ 2

Δx (k). This method is particularly useful for time series
with irregular sampling—any pair of data points provides an estimate at some lag k,
and we can bin the samples in k.

Figure12.2 compares the three methods—path-to-path variance, within-section
variance, and structure function, for simulations of a flicker noise, using the autore-
gressive process described in Sect. 12.3.4. For this process, we know the theoretically
expected process variance σ 2

x in the limit of large k, andwe know that variance should
approach this limit following σ 2

x (1 − e−k/kch)where in, the units used for our simula-
tion, the characteristic scale length kch = 20 time steps. The path-to-path dispersion
converges on the correct value very much as expected. The within-section disper-
sion for a single simulation on the other hand is very poorly behaved—the variations
between three different realisations shows that the behaviour is very noisy, and that it
takes many multiples of the scale length to converge. The structure function is better
behaved, but is still rather noisy; also the asymptotic value of dispersion is

√
2 larger

than σx , because of course Δx is the difference of two random variables. Finally, the
noise can get worse at long lag values k, because the lag is becoming comparable to
the whole path length, so that only a few samples of Δx are possible.

The key lessons are that quantities characterising erratic time series from single
path realisations can in general be very noisy, and that to estimate a quantity for a lag
k, the length of the dataset needs to be many multiples of k—both because behaviour
converges slowly, and because one needs many independent samples of length k.

12.2.3 Autocorrelation

Neighbouring points in the randomwalk and flicker-noise examples of Fig. 12.1 seem
to be quite close to each other in x-value, whereas data points with a large separation
in time are, on average, further apart. By contrast, for the purely random sequence
top right, the difference in x seems unconnected with how far apart in time the data
points are. We can quantify this effect. Figure12.3 shows the values of each point
xt plotted against the point xt+k for two different values of k, for the flicker-noise
sequence in Fig. 12.1. Clearly the points with k = 1 are more tightly correlated than
the points with k = 10.

We can calculate the covariance for the points in such a graph, in just the sameway
we did when testing for the correlation between two random variables in Chap. 9,
using the sample covariance sxy (see equation (9.1)). Now however, the second vari-
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Fig. 12.2 Illustrating growth of dispersion in flicker noise. Top: Three sample paths generated
using an autoregressive process with σz = 1.0 and α = 0.95 (see text for explanation). Bottom:
Growth of dispersion calculated three different ways. The coloured symbols take the sample paths
from the upper panel, and for each one calculates the dispersion between of all the values between
the start time at t = 1 and finish time at t = k. The lower black line is the ensemble dispersion—
500 paths were generated, and for each k the dispersion is calculated from one sample path to
another. For the upper line, a single path is used, of overall length tmax = 1000. Then for a given
value of k, and a given starting value xi , we find the difference with the value a distance k away,
i.e. Δxk = xi+k − xi . Finally, for given k, we find the dispersion in Δxk , using the many different
starting values. The horizontal lines indicate the theoretically predicted values for the autoregressive
process



12.2 Characterising Time Series 239

Fig. 12.3 Illustrating
autocorrelation in flicker
noise, using the sequence in
Fig. 12.1. Top: Scatter plot
of value xi versus value xi+k
for two different values of k.
Bottom: Correlation
coefficient versus lag k. The
solid line shows the expected
behaviour for the
autoregressive process used
to make the simulation

able is also x , but shifted by a lag k, and so correlated with itself. We can then define
the sample autocovariance as a function of lag k:

γ (k) =
[
1

N

∑
i

(xi − x̄)(xi+k − x̄)

]
. (12.1)

It is usual to normalise the autocovariance by dividing by its value at k = 0, which is
of course just the variance s2x , yielding the sample autocorrelation function r(k) =
γ (k)/s2x , sometimes referred to as the ACF. Just like with the standard correlation
coefficient, one would normally use ρ(k) to refer to the ACF of a theoretical process,
and r(k) for the observedACF of a specific sample path. Note that r(k = 0) = ρ(k =
0) = 1.0 by definition.
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This gives us another standard way to characterise the behaviour of a time series.
The right hand side of Fig. 12.3 shows how the ACF declines systematically with lag
k. As with the structure function, the ACF is well behaved at small lag, but fluctuates
considerably at larger values of k.

12.2.4 The Periodogram

Another popular way to characterise the behaviour of a time series is to perform
a Fourier analysis. A fundamental mathematical result is that any function can be
represented as the sum of a series of sin and cos terms. (Readers not familiar with
Fourier series should consult one of the references given at the end of this chapter.)
For a finite series of N values xt , the Fourier series representation is

xt = a0 +
N/2−1∑
p=1

[
ap cosωpt + bp sinωpt

]
+ aN/2 cosπ t,

where ωp = 2πp/N is the angular frequency and the solutions for the coefficients
are

a0 = x̄

aN/2 =
∑

(−1)t xt/N

ap = 2
[∑

xt cosωpt/N
]

bp = 2
[∑

xt sinωpt/N
]

p = 1...N/2 − 1.

The amplitude of a given frequency component p is given by R2
p = a2p + b2p. Some

algebra leads to the result

∑
(xt − x̄)2

N
=

N/2−1∑
p=1

R2
p

2
+ a2N/2.

The left hand term of the equation above is the variance of x .We can then interpret the
terms R2

p as partitioning the variance into harmonics. A plot showing the calculated
coefficients R2

p as a function of the frequency index p is known as the periodogram.1

Such a plot tends to fluctuate rather wildly from point to point, so it is normal to

1At a detailed level, different authors define the periodogram in subtly different ways—careful
reading required!
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smooth the periodogram. In the continuous approximation, we can define the spectral
density per unit ω

I (ωp) = N R2
P

4π
.

One can show that the structure function, the autocorrelation function, and the peri-
odogram are mathematically derivable from each other. They therefore contain the
same information and so to some extent choosing which to look at is a matter of
taste. However, they can give differing insights. For example, a process that has a
sinusoidal component, possibly hidden under noise, will show oscillations in the
ACF, but will show a distinct peak in the periodogram at the appropriate ωp.

12.3 Probabilistic Models for Discrete Time Series

Nature has many ways to make something that looks like flicker noise. We will look
at the two simplest classes of mathematical process that produce the desired result—
autoregressive processes, and moving average processes. Although simple, they are
frequently used successfully as models of real physical processes. In both cases,
we start by assuming that we are dealing with a sequence at discrete times xt , with
t = t1, t2, . . .. Both processes have continuous analogues, but these have subtleties
that are best left until after we have examined the discrete versions.

12.3.1 Purely Random Processes

In apurely randomprocess each value in the sequence xt is drawn from the probability
distribution of a separate, independent random variable Zt . Normally we assume that
the random variables Zt all have the same probability distribution. Then for a specific
sample path, the sequence of values is xt = Zt where now we assume that each Zt

is in fact a value independently drawn from the same random variable Z , which
has distribution P(Z), with some mean μZ and variance σ 2

Z , so that μx = μZ and
σx = σZ . Most often we assume that Z has a Gaussian distribution, but sometimes
we might assume for example a Lorentzian distribution or a Poisson distribution.
The periodogram of such a random process has equal contributions to variance from
all frequencies, so that this type of process is sometimes referred to as “white noise”.

Some time series may be modelled as purely random, but the random process is
also the base process for our methods of generating flicker noise. Used this way, we
usually assume μZ = 0.
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12.3.2 Moving Average (MA) Processes

In a moving average process of order q, denoted MA(q), we start with a random
process Zt and then construct xt as the weighted sum of Zt plus q previous random
seed values:

xt = c + β0Zt + β1Zt−1 + ....βq Zt−q . (12.2)

Here each Zi is an independent random variable, all with the same μz = 0 and
dispersion σz . Usually Z is assumed to have a Gaussian distribution. (Wewill discuss
possible variants in Sect. 12.3.7.) The constant c is to allow x to have a non-zeromean.
We can get the essence of such a process by taking c = 0 and β0 = 1, which we will
do henceforth. The value of xt is therefore a weighted average of a sequence of Z
values, which we “slide along” for each new xt value.

Wecan see the base sequence Zt as the input, the sequenceofweights 1, β1, β2...βq

as a filter, and the result xt as the output. Viewed this way, a moving average process
is an example of a linear system. Such a system can be expressed as b(t) = ∫

h(u)

a(t − u)du, where a(t) is the input, b(t) the output, and h(u) the impulse response
function, i.e. the output we would get if the input was a delta function spike. The
special features of the moving average process are that the sequences are in discrete
steps of time, and the input is a sequence generated by a set of independent random
variables. Both the input Z and the output x are therefore statistical entities, different
at each implementation.

What are the statistical characteristics of the resulting sequence? As xt is a
weighted sum of random variables each with μ = 0 and σ = σZ , we can see that

μx = 0 and σ 2
x = σ 2

Z

q∑
k=0

β2
k .

Note that σ 2
x here is the true process “path-to-path” variance. In other words, if

we implemented the MA process many times, and compared the values of xt for
the many implementations at some fixed time, this would be the variance in the
distribution of values. What about the autocorrelation function of this process? To
do this calculation, note two things about the covariance of two independent variables
Za and Zb. First, Cov(Za, Zb) is zero unless a = b. Next, because our variables have
zero mean, then Cov(Za, Zb) is simply E[Za Zb]. Now lets look at the simplest case,
the MA(1) process with β1 = β and all other βk = 0. At lag k we have

xt = Zt + βZt−1

xt+k = Zt+k + βZt+k−1

γ (k) = E[xt xt+k]
= E[ Zt Zt+k + βZt Zt+k−1 + βZt−1Zt+k + β2Zt−1Zt+k−1]

1 2 3 4
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The trick now is to look at the four labelled terms in that last expression. For k = 0,
terms 2 and 3 vanish, because the indices are different. Term 1 gives E[Z2

t ] =
σ 2
Z , and 4 gives E[β2Z2

t−1] = β2σ 2
z . For k = 1, only term 2 is non-vanishing,

giving E[βZ2
t ] = βσ 2

z . We then have

γ (0) = σ 2
Z (1 + β2) = σ 2

x ρ(0) = 1

γ (1) = βσ 2
Z = σ 2

x

β

1 + β2
ρ(1) = β

1 + β2

By similar but more laborious arguments we can derive the autocovariance function
of an MA(q) process, cross-multiplying all the terms and keeping only the ones with
matching indices for a given k. What we find is

γ (k) = σ 2
Z

q−k∑
i=0

βiβi+k, ρ(k) =
q−k∑
i=0

βiβi+k/

q∑
i=0

β2
i . (12.3)

12.3.3 Useful Filters

In much of social science, and sometimes in physics, the aim of characterising the
statistical properties of a time series is to enable forecasting—for example, if we have
a time series of recent stock prices, can we predict tomorrow’s price, or next week’s?
The typical procedure is then to assume a relatively low order process (MA(1),
MA(3) or whatever), then to measure the sample mean, variance, and autocorrelation
function of the series, and finally to use these to estimate c, σZ , and the βi values.
This will not allow us to predict the future values with certainty, but rather gives
us a range of forecast values, which will diverge with time. Having estimated the
parameters of the MA process, you can imagine taking todays stock price, or quasar
brightness, and then creating many simulated paths starting from that value, which
will give a diverging set of paths, like in Fig. 6.1.

In physics we are more interested in the interpretation of the filter, seen as an
impulse response function, as this will give us insight into the nature of the physical
system. For example, the impulse response function may correspond to how an
electronic component responds to impinging electrons, or how the gas surrounding
a black hole responds thermally to random fluctuations of energy. If we propose a
mathematical form for our filter, what will be the resulting ACF, or the resulting
structure function?

A simple example is a top hat filter of size q, with all βk the same. Correlating
this filter with itself will produce a triangular ρ(k), reducing to zero by k = q. For a
Gaussian filter centred on q/2 with dispersion σG , the ACF is also a Gaussian, but
with σ = √

2σG .
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Possibly the most important example however is a sawtooth exponential filter.
A wide range of natural systems respond to fluctuations with a fast rise, followed
by an exponential decay on some timescale kch. Note that kch is the decay time in
units of the timestep of our discrete time series. We can then express such a filter as
βk = e−k/kch , with q = ∞. The variance of the resulting time series will be

σ 2
x = σ 2

Z

∑
β2
k = σ 2

Z

[
e−0/kch + e−2/kch + e−4/kch + ...

]
For the autocovariancewe need to calculate the sumof termsβiβi+k . For i = 0we get
e−0/kche−k/kch . For i = i we get e−1/kche−(1+k)/kch = e−2/kche−k/kch , and so on. Putting
these terms together we get

γ (k) = σ 2
Ze

−k/kch
[
e−0/kch + e−2/kch + e−4/kch + ...

]
= σ 2

x e
−k/kch ,

and so for the ACF we find that

ρ(k) = e−k/kch . (12.4)

So an exponential filter produces an exponential ACF with the same decay time, a
pleasingly simple result. What about the structure function? We have two random
variables a distance k apart, xt and xt+k . Both of these have variance σ 2

x , but they also
have a mutual covariance given by γ (k). Following the usual transmission of errors
formula (see equation (2.9)), if c = a − b, then σ 2

c = σ 2
a + σ 2

b − 2σab. So here we
have

σ 2
Δx (k) = 2σ 2

x

(
1 − e−k/kch

)
. (12.5)

where σ 2
Δx is the variance of the differences between pairs of measurements k steps

apart. Note that the asymptotic value is twice the “path-to-path” variance, as we
would expect.

12.3.4 Autoregressive (AR) Processes

In an autoregressive process of order p, denoted AR(p), each data value xt is a linear
combination of past values, plus a random term:

xt = c + α1xt−1 + α2xt−2 + ...αpxt−p + Zt . (12.6)

As with the MA process, each Zt is an independent random variable with the same
σZ and μZ = 0, not necessarily Gaussian but usually assumed to be so. The simplest
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Fig. 12.4 Simulations of theAR(1) process for different values ofα. Note thatα = 0would produce
a purely random sequence, and α = 1 would produce a random walk. The value α = 0.95 is what
was used in simulations of flicker noise earlier in the chapter

process is AR(1) with c = 0, in which case

xt = αxt−1 + Zt . (12.7)

Some examples are shown in Fig. 12.4. The parameter α tunes the process:

• For α < 0 the sequence oscillates.
• For α = 0 we have a purely random process, where each value is determined
independently purely by the probability distribution p(Z).

• For α in the range 0 to 1 we get flicker noise—a sequence like a random walk, but
smoother. This is often known as a damped random walk.

• For α = 1.0 we get a random walk.
• For α > 0 the sequence diverges rapidly.

The sequences we see for α = 0 − 1 are reminiscent of the outputs we get fromMA
processes. This is not a coincidence. Using the AR(1) formula above, we can get
Zt−1 in terms of Zt−2 and so forth; applying this recursively you can see that another
way to express xt is
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xt = Zt + αZt−1 + α2Zt−2 + +α3Zt−3 + · · · .

So in other words, an AR(1) process can be expressed as an MA process with βk =
αk and q = ∞. Because xt is made of an infinite sum of random variables, it is
immediately obvious why the process blows up for α > 1. The identification of an
AR(1) process with an infinite MA process also allows us to use our previous results
to calculate the characteristics of x . For example, the overall (path-to-path) variance
will be:

σ 2
x = σ 2

Z

∑
β2
k = σ 2

Z (1 + α2 + α4 · · · ) = σ 2
z

1 − α2
,

where we have used the fact that (1 − x)−1 = 1 + x + x2 + · · · . Likewise we can
get the autocovariance γ (k) = σ 2

Z

∑∞
i=0 βiβk . The βiβk term gives

i = 0 → αk

i = 1 → ααk+1 = α2αk

i = 2 → α2αk+2 = α4αk

and so you can see

γ (k) = αk(1 + α2 + α4 + ...)

= αkσ 2
x = αkσ 2

Z

1 − α2

and so the ACF is given by ρ(k) = αk . This power-law filter shape is actually close
to exponential. For βk = αk we have logβk = k logα ∼ k(α − 1), where in the last
step we have used the standard power law approximation for log x . So then we have

βk ∼ e−k/kch with kch = 1

1 − α
.

Following our MA results, we then expect

ρ(k) = e−k/kch and σ 2
Δx (k) = 2σ 2

x (1 − e−k/kch ) (12.8)
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with

kch = 1

(1 − α)
, and σ 2

x = σ 2
Z

1 − α2
. (12.9)

12.3.5 The General ARIMA Process

The simple AR and MA processes we have considered can be generalised further.
First, they can be combined, so that xt can be formed from a linear combination
of both past x values and past Z values. This forms what is known as an ARMA
process:

ARMA(p,q) : xt = c + Zt +
p∑

i=1

αi xt−1 +
q∑

i=1

βi Zt−1.

Such ARMAmodels are very popular in the social sciences, but are not so popular in
physics, as the physical interpretation of the parameters isn’t usually obvious. Real
time series often have trends or other deterministic components as well as the random
element; a common practice is to take the differences between successive values to
try to remove such trends, and then model the remaining difference series with an
ARMA process. One can repeat this differencing process multiple times. The whole
modelling process is then known as an “autoregressive integrated moving average
(ARIMA)” model. It is also possible to model several variables at the same time with
a combined AR model, which is then known as a “Vector AR (VAR) model”.

12.3.6 Wiener, Cauchy and Poisson Processes: Shot Noise

We have so far assumed that our seed process Z is Gaussian. What if we loosen this
assumption? Any process where the Zt values are independent random variables is
known as a Levy process. If the distribution of Z is Gaussian, this is known as a
Wiener process. If the distribution is Cauchy (Lorentzian) then this is known as a
Cauchy process.

Another possibility of interest is that the seed is a Poisson process—i.e. a series
of delta-function spikes, with waiting time between events given by the waiting time
distribution equation (6.4). The resulting output is known as “shot noise” and is
clearly a set of overlapping “events” (see Fig. 12.5). The MA-Wiener process with
exponential filter can be seen as a limiting case, where many “shots” occur in each
time bin. In general, the ACF will reproduce the input shot shape.
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Fig. 12.5 Simulations of
shot noise process. In each
case, events are produced at
random using the waiting
time distribution equation
(6.46) with the rate per unit
time given by λ = 1.5 (upper
panel) and λ = 10.5 (lower
panel). The event times are
indicated by the vertical bars.
Each event produces an
exponential shot with height
h = 1.0 and decay time
τ = 1.5; these are then
added together to produce
the final time series. In the
upper panel, the individual
shots can be easily seen; in
the lower panel, the shots are
heavily overlapping

12.3.7 Other Variations

Potentially there are many more variations on the basic ideas of AR and MA pro-
cesses. For example, we have assumed that current values are linear combinations
of past values, or of past random seed values. What if we allow arbitrary non-linear
combinations? We could also relax the assumption that the random seed values are
independent of each other. But there is little point adding mathematical complexity
for its own sake. (Mathematicians may disagree, because that is their idea of fun...)
We should make mathematical implementations of whatever seems to emerge from
physical models of real situations when we require them. From a physicist’s point
of view, the most obvious thing we are missing is how to treat systems in continuous
time, which is what we look at in the next section.
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12.4 Continuous Stochastic Processes

We have so far modelled erratic processes as discrete time series. This is appropriate
for some situations, where measurements are naturally taken at discrete intervals, for
example daily stock prices, or seasonal effects. However many physical systems are
most naturally modelled in continuous time. Turning physical laws into mathematics
generally results in differential or integral equations. Can we recast our time series
techniques as continuous processes? For example, we noted that a MA process is
equivalent to:

x(t) =
∫ ∞

0
h(u)Z(t − u)du,

where Z(t) is the input, h(u) is the filter, and X (t) is the output. If Z(t)were a simple
deterministic function of time, then this would be a normal linear system, but here we
require Z(t) to be a random function of time. In a similar fashion, for an AR process,
in principle we should be able to arbitrarily shrink the time step between successive
values, and deduce a differential form for the process in terms of a continuous random
process Z(t). But what do we mean by such a continuous random function of time
Z(t)? Its a rather problematic concept. Suppose Z is a random variable with some
probability distribution P(Z), a mean μ, and a dispersion σ . Then at each possible
time t , Z(t) is a distinct and independent such variable. Consider two points in time
separated by a small amount of timeΔt . The differenceΔZ between the two Z values
will have a meanμΔZ = 0 and a dispersion σΔZ = √

2σ . If we makeΔt smaller and
smaller, σΔZ will always be the same, and ΔZ/Δt therefore becomes ever larger on
average. The function Z(t) is therefore not differentiable, and it becomes hard to use
normal techniques to solve differential equations. Similarly, if we try to evaluate the
integral of Z(t) over some region by summing up using small steps Δt , and then
letting Δt → 0, we don’t get a convergent answer.

Although a pure random continuous input process therefore seems to be patho-
logical, the output erratic sequences themselves are not pathological. Although the
x values of our AR and MA processes flicker erratically, the correlation we have
introduced by these processes means that neighbouring values are statistically closer
together; as you can see from equation (12.5), as k → 0, σΔx → 0. What then is our
route forward to using differential and integral equations to model noisy systems?

12.4.1 The Wiener Process as an Approximation

We could consider continuous random noise as a mathematical abstraction which in
practice can only be implemented at a specific discretisation Δt . Sometimes Z(t)
has no physical meaning; it is just a modelling device to enable us to characterise
the observed process x(t). Sometimes however, both Z(t) and h(u) do have physical
meaning. The flicker noise we observe may be caused by underlying rapid fluctua-
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tions in some system, which are then smoothed out by the physical response. The
classic example is Brownian motion, the jiggling movements of particles, such as
pollen grains, suspended in a fluid, which is caused by the bombardment of those
grains by the random motions of the even smaller molecules of the fluid. On short
enough timescales, and with enough spatial resolution, the motion of the molecules
is deterministic. However, in practice we do not know what the molecules are doing,
so the force acting on the grain must be considered random from one moment to the
next. On very short timescales, the net force acting on the grain, while random, will
be highly correlated over time. However, on slightly longer timescales, the random
force will be effectively independent from one time step to the next. The timescale
on which this effective independence happens will still be much shorter than the
sampling timescale with which we observe the motion of the grain. Finally then we
arrive at the idea that although the buffeting of the grains by the molecules is not
in truth a pure random continuous process, we can model it with that mathematical
abstraction.

The buffeting of grains leads to a random walk in 3D, as first shown by Einstein,
and subsequently set out with more mathematical rigour by Norbert Wiener. We
will consider the equivalent 1D process for simplicity. Imagine a sequence of values
x(t) separated by some small (but not infinitesimal) time Δt . Suppose that, on this
timescale, each x value is connected to the next by a random increment that we
could write as ΔW . Each increment is an independent random variable with mean
zero and dispersion σΔt . If the probability distribution of each ΔW is Gaussian, then
the increments are known as “Wiener noise”, and the resulting x(t) sequence as a
“Wiener process”. (Hence the use of the symbol W .) Now consider the x value N
time steps later, at a time t + T where T = NΔt . The result is given by the sum of
N successive increments:

x(t + T ) = x(t) +
N∑
i=1

ΔWi .

As each of the ΔWi are independent random variables with dispersion σΔt , then the
sum of these random variables will give another random variable, with mean value
equal to x(t) and a dispersion given by σT = √

NσΔt ∝ √
TσΔt . Note the square-

root spreading with time, which we alreadymet in Chap. 6 when talking about simple
random walks.

When we use Wiener noise to model real processes, the customary procedure
is as follows. We define a standardised Wiener noise2 dWt as that which has unit
variance on some infinitesimal timescale dt . On this timestep dt we then apply
increments ΔW = σdWt where σ is a free parameter used to model the process. We
then calculate the properties of the process on macroscopic timescales, for example
finding the total observed dispersionσx , whichwill be some function of themodelling
parameter σ . In essence then we don’t have to worry what happens to the noise in

2There are some subtly different conventions for normalising Wiener noise in the literature, so do
read carefully.
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the continuum limit. For small time steps, the approximation of independent random
fluctuations will fail, but most of the effect on the output is caused by fluctuations on
much longer time steps, and σ is just a parameter that allows us to model the process
on macroscopic timescales. This will become a little clearer when we discuss an
example in Sect. 12.4.3. But first, we must think more carefully about how we solve
difference equations.

12.4.2 Solving Difference Equations

How do we use these ideas to solve the behaviour of dynamical systems driven by
noise? We will take a very brief look here at a big subject, following but further
condensing the treatment given by Jacobs (see the Further reading section). First,
let’s recap techniques for deterministic differential equations. Sometimes one can
integrate directly. For example if we know that dx/dt = a it is clear that x = at + C .
Often we need to separate variables. So for example

dx

dt
= −γ x ⇒ dx

x
= −γ dt ⇒ ln x = −γ t + C,

and so the solution is x(t) = x0e−γ t where C = ln x0. Let us look at an alternative
way of solving this equation, by expressing it as a difference equation.

dx

dt
= −γ x ⇒ x(t + dt) = x(t) − γ x(t)dt = x(t) (1 − γ dt) .

Next, we note that if a is small, then ea ≈ 1 + a. So if dt is small and we can ignore
terms in dt2, dt3, ... then the above equation becomes

x(t + dt) ≈ x(t)e−γ dt .

So moving by step dt is accomplished by multiplying by e−γ dt . We can repeat this
process so that x(t + 2dt) = x(t)e−2γ dt and so on. If we move from time t = 0 at
x(t = 0) = x0 to time t + τ where τ = Ndt then we get

x(τ ) = x0e
−Nγ dt = x0e

−γ τ .

which is the same solution we found before. This method can be generalised to more
complicated situations. For example if γ is a function of time, you can show that

x(t + τ) = x(t) exp

(
−

∫ t+τ

t
γ (t)dt

)
.
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Alternatively if we add a “driving term” f (t) we find that

dx

dt
= γ x + f (t) ⇒ x(t) = x0e

−γ t +
∫ t

0
e−γ (t−s) f (s)ds.

12.4.3 The Ornstein–Uhlenbeck Process

This last variant leads us to the idea that we can think of our random increments
as the “driving term” in an equation like the one above. At each time step in our
difference equation, f (t) could be an independent random variable, with mean zero
and dispersion depending on the time step dt . This leads to a stochastic difference
equation (SDE). The simplest such difference equation can be written

dx = −γ xtdt + σdWt , (12.10)

where we have used the standard normalisation of the Wiener noise, where dWt are
increments with unit variance, and σ is a parameter characterising the model. Note
that the equation is written in difference equation style; we can’t write in terms of
derivatives because we can’t guarantee they exist. However, using dt rather than Δt
is meant to imply that we are extrapolating to the continuum limit.

In the mathematical literature, this equation is known as the Ornstein–Uhlenbeck
(OU) equation. In Physics, it is exactly the same as the Langevin equation which
models Brownian motion in the presence of drag. In economics it is known as the
Vlasicek model, and is used for example to model the time history of interest rate
changes, and where σ is referred to as the “volatility”. The “OU process” resulting
from the OU equation is also sometimes known as a damped random walk. By
comparing with the previous section, you can see that the solution is

x(t) = x0e
−γ t + σ

∫ t

0
e−γ (t−s)dW (s).

Note however the peculiar meaning of “solution” in the world of SDEs. What we
have above is a predicted sample path x(t), given a starting point x0, but also given a
specific realisation of theWiener noise, i.e. a particular set of dW values. The solution
also involves a “stochastic integral”, which is technically problematic because of the
non-differentiability ofW . However, ifwe take a specific discretisation (inwhich case
what we have essentially is an AR(1) process) we can always numerically compute
results to the precision we require.

What is often more useful than one sample path is to look at the ensemble of paths
from many realisations of W , and then to characterise the probability distribution of
x(t)—so for example this could give you a range of uncertainty on future predicted
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interest rate values. The solution for the OU process is that the mean of x(t) is zero,
and the variance is

Var [x(t)] = σ 2

2γ

(
1 − 2e−2γ t

)
, (12.11)

which you will recognise as essentially the same thing as equation (12.5).

12.4.4 Other SDEs

The simplest variant is the OU process with drift:

dxt = γ (μ − xt )dt + σdWt .

This process has E[x] = μ, known as the “mean reversion level”, with γ being
referred to as the “mean reversion rate”. Another popular variant is Geometric Brow-
nian motion, which has the increment size proportional to the current x value:

dxt = αxtdt + σ xtdWt .

The solution to this equation produces tracks which grow systematically with time,
and has E[xt ] = x0eαt and Var(xt ) = x20e

2αt (eσ 2t − 1). This equation is the basis of
the Black Scholes model for predicting the behaviour of the stockmarket. It can be
seen as one of a family of Vlasicek models where the increments are σ xβ

t dWt .
Many other variations have been considered in the literature. There could be

multiple noise sources, or multiple variables. The parameters could be a function of
time. An interesting variant on this idea is the “two factor” Vlasicekmodel, where the
mean reversion levelμ is not a constant, but is itself produced by its ownOU process.
Potentially one could add stochastic and damping terms to any set of differential
equations. Two interesting examples discussed by Lemons are the damped harmonic
oscillator, and stochastic cyclotronmotion (see the Further Reading section). Finally,
we could relax the assumption that the increments are Gaussian noise; assuming a
Cauchy/Lorentzian distribution for the increments produces quite different looking
results. Alternatively, the input randomfluctuations could be a Poisson process; i.e. at
each time step there is a probability that either there is a increment or not. Obviously
this is closely related to the shot-noise process we discussed earlier; in the context
of SDEs it is known as a jump process.

For any proposed process, we can in principle simulate paths using a suitable
discretisation, and we can likewise take a numerical approach to finding the distri-
bution of xt by simulating a large number of paths. Ideally however, we would like
to find analytic solutions. This is where the non-differentiability of Wiener noise (let
alone Cauchy noise) becomes a problem. Solving regular differential equations often
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involves guessing a suitable change of variables; however changing the differentials
involves using derivatives which we can’t do. Likewise, in evaluating stochastic inte-
grals, we can’t assume that terms in dW 2 vanish with respect to dW . Alternative rules
of stochastic calculus have been developed, by Ito and by Stratonovich, but these are
beyond the scope of this introductory material.

12.5 Markov Chains

A Markov process is one that has no memory; its future state depends only on its
current state and some kind of procedure for deciding how it evolves. A randomwalk
is therefore an example of a Markov process, as is the more general AR(1) process
we have discussed in this chapter. The MA process on the other hand depends on
past history, and a purely random process doesn’t even care about the current value.

Markov processes can be in continuous time or discrete time, and the values in
the sequence can likewise be continuous or discrete. A Markov chain is a Markov
process in discrete time steps, with a set of discrete possible x values—usually a
finite set, but sometimes a countably infinite set. Most often it refers to a system
that has a relatively small set of possible states, and hops between those states in a
sequence. At each hop, there is some probability of hopping from the current state
to each of the other states. If those probabilities are always the same from one hop
to the next, the chain is said to be homogeneous.

An example might be a a multi-state quantum system, with transition rules for
jumping between the states. Another popular example is the idea that the probability
of tomorrow being a rainy day depends on whether today is rainy or sunny (see
exercises).

We can express these ideas more formally. The chain is a sequence of random
variables X1, X2, X3, . . . Xn, . . .. The set of all possible states is called the state
space, and we can label the states S1, S2, . . . Si , . . .. At any time n, the system is in
some specific state Xn = Si . (The states may not be numerical values, but we can
take the = sign as indicating that the system is in that state). The probability that at
the next step the system will hop from state Si to state Sj is given by

Ai j = P(Xn+1 = Sj |Xn = Si ).

This is known as the transition matrix A. Note that it includes the probability of
staying in the same state, Aii . Given this updating rule, starting with some initial
value X0 = Si , we can generate a sequence of values. Some updating rules might
result in the system getting a stuck in a specific state, but more often the process will
result in an ever changing sequence of values. However, at any one time step n there
will be a probability distribution of being in state i , which we could think of as a state
probability vector p(n) where p(n)

i = P(Xn = Si ). We have written the superscript
as (n) to emphasise that this indicates the nth iteration, rather than raising to the nth
power. Then the probability distribution at the next time step will be given by
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p(n+1) = p(n) × A,

where we follow the usual rules of matrix multiplication. If the system starts in say
state Sk , then we can express the initial probability distribution by setting Pk = 1
and all other Pi = 0. Then after n steps we have p(n) = p(0) × An where An means
the matrix A multiplied by itself n times. Does this probability distribution settle
down to a stable result after some period of time? In other words, can we find a
state probability vector π such that π × A = π ? This problem can in principle
be solved by diagonalising A, and finding its eigenvalues. In general this could be
quite a tough problem. The simplest case is the two state Markov system. This has a
wide variety of applications, but including for example studying random transitions
between spin-states of particles.

Suppose then we have two states, labelled 1 and 2. Suppose the probability of
hopping from state 1 to state 2 is a, and that of hopping from state 2 to state 1 is b.
Then the transition matrix is

A =
(
1 − a a
b 1 − b

)
.

Multiplying A by itself many times gives

An = 1

a + b

(
b a
b a

)
+ (1 − a − n)n

a + b

(
a −a

−b b

)
lim

n→∞ (An) = 1

a + b

(
b a
b a

)
.

Solving the eigenvector problem shows that the steady state solution is

π = 1

a + b
(b a) . (12.12)

If you calculate π × A you can easily verify that π is reproduced.
Another interesting physics related problem is the Ehrenfest model of diffusion.

Here, we consider two chambers containing gas molecules, connected by a narrow
pipe. There are N molecules in total, with x in chamber-1 and N − x in chamber-2.
At each time step we pick one of the N molecules at random and consider moving
it; we give it probability p of moving to the other chamber, and probability 1 − p
of not moving. However, we are of course more likely to pick a particle from the
chamber currently containing more particles. Suppose now we watch the sequence
of values xn . We can set up the transition matrix for changing from any value of x to
any other value; however, because we decided to move one molecule at a time, most
of the matrix elements are zero, and we have only

pi,i+1 = p(N − x)

N
, pi,i−1 = px

N
, pi,i = 1 − p.
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It is fairly obvious that themost probable state iswith x = N/2 and that in equilibrium
the probability of other values of x will follow the binomial distribution. The stable
solution is what we found of course in Chap.3, Sect. 3.6.4. The Markov chain we
have set up is a kind of “toy model” of how a gas will approach that equilibrium over
time. As it does so, its entropy increases, as we will discuss in Chap.14.

12.6 Key Concepts

Some of the key concepts from this chapter are:

• That many natural processes seem to be partially random.
• The importance of distinguishing stationary from non-stationary processes, and
how hard that is in practice.

• How to characterise a time series by its structure function, its autocorrelation
function, or its periodogram.

• How to model an erratic time series as a moving average process, or as an autore-
gressive process.

• The conceptual difficulties ofmodelling noise-driven processes in continuous time,
and how they are addressed.

• The idea of a Markov chain, and the related state vector and transition matrix.

The key formulae from this chapter are as follows: the definition of the autocovari-
ance function (12.1); the definition of a moving average (MA) process as a filtered
version of random noise (12.2); the autocovariance function of a general MA process
(12.3), and the autocorrelation function (12.4) and structure function (12.5) for aMA
process with an exponential filter; the definition of an autoregressive (AR) process
of order p as a weighted sum of past values, plus a noise term (12.6), and the sim-
plest AR(1) process (12.7); the autocorrelation function and structure function for an
AR(1) process (12.8), and how the timescale and variance depends on the parameter
α of the AR(1) process (12.9); the equation defining the Ornstein–Uhlenbeck (OU)
process (12.10), and the structure function resulting from it (12.11); and the stable
state vector resulting from a two-state Markov chain (12.12).

12.7 Further Reading

There are many textbooks on Time Series analysis, mostly centred on the social
sciences and the problems of forecasting. The foundational text, and still a definitive
volume, is Box and Jenkins, first published in 1970, and now in its fifth edition as
Box et al. (2015). Its rather technical though. A much simpler and very clear book
is Chatfield (2003), and another good text is Brockwell and Davis (2016).

The field of stochastic processes tends to be dominated by rather abstruse and
mathematical works. Two excellent books that are specifically aimed at Physicists



12.7 Further Reading 257

are Lemons (2002) and Jacobs (2010). Some of the examples discussed and the
derivations I have used are based on these two books, as described in the text. In this
chapter, I have stopped short of fully explaining the Ito calculus or the equivalent
Stratonovich method, which you need to solve Stochastic Differential Equations.
Jacobs is particularly thorough on this issue, and also has a good description of
applications in the financial world, including the notorious Black–Scholes equation.
Some of the key original papers in the field of Brownian motion and related phe-
nomena are Einstein (1905), Langevin (1908) and Uhlenbeck and Ornstein (1930).
Note however, that Bachelier (1900) is generally credited as having first come up
with the basic ideas of “Brownian Motion”, as part of his Ph.D. thesis a “Theory of
Speculation”.

Throughout this chapter, I refer to “flicker noise” in a loose sense of any partially
random time series. Some authors reserve this term specifically for the erratic fluctu-
ations in electronic components, and some use it as a synonym for what is known as
“1/f noise”. Awide variety of erratic time series, when analysed in Fourier terms (see
Sect. 12.2.4) show spectral density which seems to show a low-frequency divergent
power law shape with frequency (ω or f ), and specifically a power-law index of 1.0.
For some time, this was seen as an intriguing mystery (e.g. Press 1978). However,
just like with power-law probability distributions in general (see Chap. 6), a variety
of methods can give such a shape, and actually it is likely that the shape is never
truly 1/ f . A good example is the erratic fluctuations in the X-ray emission from the
famous black hole candidate Cygnus X-1. Originally it seemed that these showed a
power-law shape; but in fact when much more comprehensive data was assembled,
it became clear that it shows a continuously curved spectral density—more like a
random walk at high frequencies, roughly 1/ f in the mid-range, and white noise at
low frequencies (see e.g. Fig. 3 of Uttley et al. 2005).

Following the financial crash of 2008–9, there was discussion about whether
the Black–Scholes equation was the cause—see for example the Guardian piece by
Stewart (2012), or the Financial Times piece by James Weatherall (2013). Of course
the model itself did not cause the crash, but its naive application did play a role.
Stewart explains that effects such as the herd instinct were not taken into account;
but essentially it boils down to assuming the behaviour can bemodelled as a stationary
process, when in fact it is not stationary. As I write, we are probably going through
an analogous problem in trying to understand quasars. The optical light curves of
quasars are often modelled as a “damped random walk” (e.g. MacLeod et al. 2010),
which is another term for an AR(1) or OU process. This explains erratic variations
of size around a few tens of percent; but every so often it seems some quasars suffer
a dramatic “crash”, dimming by an order of magnitude over a few years in a way
that shouldn’t happen according to the damped random walk model (MacLeod et al.
2016).
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12.8 Exercises

12.1 Figure12.2 illustrates the growth of dispersion versus lag for simulations of a
typical flicker noise, contrasting the path-to-path dispersion of many simulated paths
with the within-path dispersion of single simulated paths. In the examples shown, the
within-path dispersion curves seem to be not just erratic, but also to systematically
undershoot at low lags. Is this probably a fluke for the three examples shown, or a
real effect? Based on what we learn later in the chapter, what lag do you need to get
away from this effect?

12.2 The brightness of a quasar is measured on a monthly basis, and over the first
fourteen months produces the following values: 31.6, 30.2, 28.7, 30.9, 31.4, 27.2,
33.4, 27.8, 29.3, 29.4, 30.6, 28.4, 30.6, 29.5. (The units don’t matter). Calculate the
value of the ACF at lag k = 1 month. At 5% significance, is there evidence that the
variability of the quasar is anything other than random? Does this result agree with
the visual judgement you might make by (a) plotting the light curve (i.e. the time
series of brightness), or (b) by plotting successive values against each other?

12.3 Amoving average (MA) process is given by xt = Zt + α(Zt−1 + Zt−2 + · · · )
with σ 2

Z = 1. Is this a stationary process? Suppose we form a new process by taking
the difference of successive xt points. Is this stationary? Show that this process has
an ACF with ρ(1) = α − 1/(2 + α2 − 2α).

12.4 AnAR(1) process has α = 0.8. How accurate is the exponential approximation
to the ACF for a lag of k = 1, 3, 6? In general, will the approximation be better or
worse for smaller/larger α?

12.5 In the text, we discussed how a continuous pure noise process is pathological
because the variance doesn’t decrease as you make the time step smaller, so that
the process is not differentiable, whereas for a flicker noise this is not in practice a
problem because of correlations between neighbouring points. But is, say, an AR(1)
processwith a low value ofα close to pathological in practice? Calculate the structure
function for an AR(1) process with α = 0.1, 0.3, 0.6, 0.9, and 0.99, and compare the
σΔx (k) values at k = 1 and k = kch.

12.6 Show that the OU process can be approximated by an AR1 process with γ =
1 − α.

12.7 A study has noted that in a specific location, if a day is rainy, there is a 25%
chance that the next day will be rainy as well. On the other hand, if today does not
have rain, there is an 80% chance that the next day will also be clear. The same study
finds that the overall fraction of rainy days is 15%. Are these facts consistent with
the idea that weather follows a Markov process? If not, why not?
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Chapter 13
Probability in Quantum Physics

13.1 Outline of Content

• Unpredictability in the classical and quantum worlds
• Quantum probability amplitudes
• Measurement and state mixtures
• Probability consistency tests of hidden variable theories
• Whither Quantum Mechanics?

Quantum mechanics is the most successful theory we have. It is of enormous
practical value, and makes very precise predictions about the behaviour of the phys-
ical world. Without it, there would be no electronics industry, no computers, and no
internet. It explains why the Sun burns, and the shapes of crystals. We have had this
amazingly powerful theory for almost a hundred years now; and yet still we find
ourselves uncomfortable with its philosophical message. It seems to tell us that the
world is irreducibly unpredictable at its heart, whereas our instinct as scientists is
that the world is causal and deterministic, even though in practice we often need
to take a probabilistic approach. In this short chapter we won’t solve these deep
problems, but we will look briefly at some key issues that involve the concepts of
probability—intrinsic unpredictability; the appearance ofmicroscopic unpredictabil-
ity in the macroscopic world; the strange behaviour of probability amplitudes; the
problem of measurement; and the question of whether “hidden variables” exist. We
will assume that the reader has had a first course in quantumphysics, but don’t require
a detailed knowledge of quantum mechanics. Let’s start by contrasting randomness
in the classical and quantum worlds.

13.2 Unpredictability in the Classical and QuantumWorlds

In Chap.1 we discussed how our notion of randomness is really about the pre-
dictability of events. We listed various ways that a deterministic world, governed
by strict laws of cause and effect, can nonetheless produce events that are, in prac-
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tice, unpredictable—because of incomplete knowledge, large numbers, sensitivity
to initial conditions, and influence by external factors. In fact, all these situations
are variants on the problem of incomplete knowledge—for example, external factors
only produce unpredictability if we don’t know enough about those factors. The very
fact that we call them “external” is just another way of saying that we don’t know
what they are. In the quantum world however, the unpredictability is not about the
incomplete knowledge of a particular observer—it is intrinsic and inevitable.

13.2.1 Incomplete Knowledge and Observer Dependence

In Chap.11 we discussed the relations between the concepts of probability, uncer-
tainty, and information. This is another way of approaching the issue of incomplete
knowledge; h = log2(1/p) quantifies the amount of information we would need to
supply in order to remove our uncertainty about the situation. One way of looking at
quantum randomness is that, unlike in the classical view of the world, it is impossible
to supply that missing information.

The problem of incomplete knowledge is also closely connected with the problem
of subjectivity. As we stressed in Chap.1, “subjective” does not mean “vague and
woolly”—it just means “observer dependent”. In many everyday circumstances, the
observer dependence is quite extreme. Imagine witnessing a colleague tossing a
coin and being asked to predict the outcome. Observer A may say “the probability
of heads is 0.5”. Observer B however happens to know that their colleague has a
double-headed coin, and so says “the probability of heads is 1.0”. The Bayesian
approach handles this observer dependence well—according to Bayesians, the point
of statistics is precisely to give us a way to reason objectively and quantitatively in
the presence of incomplete knowledge. It is rational for Observer A to argue in a
probabilistic fashion, even though we would like to be Observer B, know everything,
and avoid all talk of probability.

At first glance, it seems as if this observer dependence is all about people—wet
brains and consciousness—but actually it is not. You could conceive of building a
machine that processes incoming data and then takes action, but it could be that
different machines have different starting points. Likewise, various natural systems,
acting differently in the presence of incomplete information, could have evolved in
a world with no human beings at all.

In many of the situations we deal with in physics, the observer dependence is
there in principle, but not in practice. Imagine a box full of (classical) particles, and
a device that measures the velocity of a single particle. In principle, if we knew the
starting conditions and all the relevant factors, we could precisely predict the result
of the experiment. In practice this is not achievable. All plausible observers are in a
state of equal ignorance. The theory of quantum mechanics however asserts that all
possible observers are in a state of equal ignorance—events really are intrinsically
unpredictable. Over the course of the last century, many people have been uncomfort-
able with this conclusion, and have felt that this must mean that quantum mechanics
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is not the ultimate theory. If only our Physics was better, they say, we would be like
Observer B, and would be able to precisely predict microscopic events. Is that gut
instinct, that quantum mechanics may be incomplete, correct? It seems not, as we
shall explore in Sect. 13.7.

13.3 Macroscopic Effects of Microscopic Unpredictability

At themicroscopic level, itmakes no sense to ask e.g. “where is the electron?”. Instead
all we can do is specify a probability density distribution for where the electron
might turn out to be once a measurement is made. The correspondence principle
asserts that the behaviour of systems described by quantum mechanics reproduces
classical physics in the limit of large quantum numbers. At a more technical level,
Ehrenfest’s theorem asserts that the expectation values of our probability distributions
obey classical laws. You might think that this means that at a macroscopic level,
observations are entirely predictable, that all the randomness is hidden away at the
unseen microscopic level. But this is not the case. We can easily see the effects of
microscopic randomness in the macroscopic world.

13.3.1 Unpredictability in the Two Slit Experiment

Themost famous example ofmacroscopic unpredictability is the two slit experiment.
In this experiment, we have a device that emits single electrons, a screen with two
slits, and a detector the far side of the slits that records the position where each
electron lands. In modern versions of this experiment, we can see the arrival of each
electron at the detector as a separate event. Over a time, the pattern which emerges at
the detector—thewell known two-slit interference pattern—is completely repeatable
and predictable. However, the arrival position of any one single electron is completely
unpredictable. Nobody has built an experiment that enables us to predict where an
individual electron will land. We will return to analyse the two slit experiment a little
more in Sect. 13.4.

13.3.2 Unpredictability in Radioactivity

The phenomenon of radioactivity comes about when an atom spontaneously changes
from one quantum state to another, and emits a particle—α, β or γ—i.e. Helium
nucleus, electron, or photon—in order to conserve energy, angular momentum or
other quantum numbers. The lifetimes of excited states of atoms and ions, i.e. the
time before they spontaneously decay, varies enormously—from nanoseconds to
billions of years, and is a well measured quantity for a specific isotope. However, the
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actual time of decay of a specific atom is completely unpredictable. A better way to
characterise the situation mathematically is to say that there is a random probability
per unit time, λ, of the decay occurring. This is the situationwe considered in Chap.6,
where we showed that this leads to a probability distribution for the waiting time to
the next event equation (6.4):

f (t) = λe−λt = 1

τ
e−t/τ .

where τ = 1/λ is the lifetime. For the case of radioactivity, there is only one event
per atom, so f (t) describes the probability distribution of the time we have to wait
before any specific atom decays. If we start with N0 atoms in the excited state, then
the number remaining after time t is N = N0e−λt , so that after time τ = 1/λ, the
number remaining has declined by a factor 1/e. For radioactive substances it is more
normal to quote the “half-life” t1/2 = τ ln 2 = 0.693τ which is the time needed for
half the atoms to decay.

Radioactive substances are very common. The human body itself is radioactive.
A typical 70kg human body contains about 160g of Potassium, roughly 0.012%
of which—about 0.019g—is the radioactive isotope 40K . For 40K the half life to
beta-decay is very long—1.25 billion years. This means that for any one atom, the
chance that it will decay within the space of a given second of time is very very
small indeed. However, there are huge numbers of atoms. Even that tiny amount
of 40K corresponds to 3 × 1020 atoms, which will produce something like 4900
decays per second. Most of the β particles are absorbed inside the body, but 11%
of the decays produce γ rays, around half of which escape the body—producing
around 250 events per second detectable by a Geiger counter. Of course that rate is
in all directions, and Geiger counters are not 100% efficient in detecting particles;
in practice a Geiger counter held near a human body will produce perhaps ∼20–30
counts per minute, i.e. one every two seconds or so. The rate of events is completely
repeatable on average, but the gap between events is unpredictable. No experiment
has been created which can predict when the next event will happen. Figure13.1
shows an example of a sequence of events, and also shows that the waiting times
follow the expected exponential waiting time probability distribution.

13.3.3 Random Number Applications

A source of random numbers is needed in a variety of practical applications—for
example statistical sampling, simulations of physical systems, gambling, exploration
of parameter space in model fitting (see Chap.10), and generating keys for encryp-
tion systems. For many applications it is sufficient to use a pseudorandom number
generator—an algorithmwhich is fed a seed value which determines its output. Such
algorithms are very sensitive to the seed value, so repeated applications produce a
sequence which is effectively random for most purposes. However, this method is
not secure enough for cryptographic purposes.
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Fig. 13.1 Simulated
sequence of radiation decay
events, and distribution of
waiting times

An alternative is to use a hardware random number generator. This could include
rolling a die or spinning a roulette wheel. More usefully, it could mean a hardware
device embodying a radio-active source, or thermal noise, or various other quantum
effects. Sometimes atmospheric noise is used,which contains elements of both intrin-
sic quantum noise, and classical effective unpredictability due to unknown external
factors. An analog to digital converter can then convert the random signal to a 1 or
0, and repeated application can produce a truly random binary string as long as we
like.

However, it is difficult for quantum-based hardware methods to produce very long
random strings, such as we need in security applications, at a fast enough rate. Rather
than producing the sequence itself, quantum devices such as radioactive sources are
normally used to produce a random seed as the input to an algorithmic pseudorandom
number generator. This combination of random seed + algorithmic sequence enables
the sequence to beproduced at the desired rate, and allowsone to adjust the probability
distribution, often “whitening” the output so that the probability distribution is close
to being flat.

Another application, of growing importance, is the generation of shared keys for
secure encrypted applications, using methods such as quantum entanglement, which
we will discuss later—see Sect. 13.6 and Exercise13.6. This concept is known as
quantum key distribution, but is often referred to as “quantum cryptography”.
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13.4 Probability Amplitudes

We have seen that events in the microscopic world are intrinsically unpredictable.
For any given potentially observable quantity, quantum mechanics predicts only
the probability of the possible values. However, the probabilities behave in a rather
strange way. The mathematics of the theory concerns, not probabilities themselves,
but probability amplitudes, via the wavefunction or equivalent mathematical con-
struct. To understand what this means, let us start by looking at the famous two-slit
experiment, assuming that electrons are particles—quantum bullets as it were. We
will then contrast this with the way waves behave. In this section, we will follow the
logic set out in the famous lectures by Feynman.

13.4.1 The Bullet Version of the Two-Slit Experiment

Imagine a device firing electrons at a screen with two slits, and recording the position
at which the electrons arrive on a detector behind the slits. (See Fig. 13.2.) We know
that the electrons come in lumps, as distinct bullets as it were, and furthermore we
know that we have to treat their arrival at any given position on the detector as an
unpredictable, probabilistic issue. We can model this situation classically as like a
gun firing bullets. The gun may be a shotgun spraying the bullets erratically, and
each bullet may scatter in a complicated way off the slit walls as it passes through
the slit. If we knew all the mechanical factors precisely, we could in principle predict
the trajectory of each individual bullet, but in practice those factors are unknown,
and we have to treat the behaviour of the bullets probabilistically.

Imagine the horizontal position on our detector divided into a series of boxes.
What is the probability that a specific electron will land in box number k? First, we
assume that the electron must go either through slit A, or through slit B, or miss
both and get absorbed in the screen. Suppose the probability of going through slit A
is P(A), and that of going through B is P(B). The values of P(A) and P(B) will
depend on howour electron gunworks, howwellwe have lined up the geometry of the
situation and so on. It doesn’t matter as long as we don’t touch the equipment—they
will stay the same.

Next, we could consider only the electrons which have passed through slit A, by
closing slit B. We could count the electrons landing in the various boxes, and get
the probability of P(k|A). It doesn’t matter that we don’t know how to calculate
this distribution—we just measure it. Likewise we can close slit A and get P(k|B).
Finally, whenwe re-open both slits, andwe count howmany hits we get in the various
boxes, we should find

P(k) = P(A) · P(k|A) + P(B) · P(k|B). (13.1)
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Fig. 13.2 Illustration of the two-slit experiment, contrasting the results with bullets and electrons.
In each case PA shows the probability distribution for where the bullets/electrons hit the screen, if
we close slit B, and conversely for PB . For bullets, when we open both screens, the probabilities
add, but for electrons we get a wave-like interference pattern

The idea is illustrated in the left hand side of Fig. 13.2. If we do this experiment with
actual macroscopic bullets, this is indeed exactly the result we will find.

13.4.2 The Wave Version of the Two-Slit Experiment

If instead of firing bullets at our slits, we send light waves, or water waves, then
we see a result like that illustrated in the right hand side of Fig. 13.2, which is an
interference pattern. Note that what produces the pattern is the way that the instanta-
neous displacements of the waves add; however, what we measure on the detector is
the intensity of the light, corresponding to the square of the wave amplitude, i.e. the
time averaged displacement. The point of course is that waves have both amplitude
and phase, so that waves with differing phases can interfere either constructively or
destructively. It is customary to think of a wave as the real part of a complex wave
function

ψ(x, t) = Re
[
ceiθ

]
where θ(t) = (kx − ωt).
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Here k andω are the spatial and temporal frequencies, and c is the complex amplitude.
The real wave has amplitude a, and phase angle φ, referenced to some arbitrary time,
but we think of these as combined into a single complex quantity

c = a(sin φ + i cosφ).

The Intensity of the wave is proportional to a2. If we define the complex conjugate
ψ∗

0 = a(sin φ − i cosφ), then we can recover the amplitude as a2 = ψ0ψ
∗
0 . Now

consider two waves ψ1 and ψ2 that have the same real amplitude a but differing by
phase δ. We add the complex amplitudes and find the intensity of the summed wave:

I ∝ a2
sum = |ψ1 + ψ2|2 = 2a2(1 + cos δ). (13.2)

For the two slit experiment, the phase difference between the waves arriving from
the two slits is a function of position x , giving a continuously varying I (x), the well
known interference pattern.

13.4.3 The Quantum Version of the Two-Slit Experiment

When we do the experiment with electrons, we get features of both bullet and wave
behaviour. Electrons behave like probabilistic bullets, arriving one at a time unpre-
dictably, but the accumulated pattern over time looks like the light-wave interference
pattern. Quantum mechanics proposes the following recipe as a solution.

• Any one electron is associated with a complex “wave function” ψ which varies
with location in space

• We cannot measure the wave function itself, but if we make a measurement at
some location, the probability of finding the electron there is given by |ψ |2, which
is a real number.

• The wavelength of the wave function is given by λ = h/p where p is the momen-
tum of the electron and h is Planck’s constant. This allows us to calculate the phase
difference between the electrons coming from the two slits.

• For twowavefunctions,wedonot add the probabilities themselves, but the complex
amplitudes: Psum = |ψA + ψB |2.

If we now consider closing slits A and B in turn, what we have is a little more
complicated than equation (13.1):

P(k|A) ∝ |ψ(k|A)|2
P(k|B) ∝ |ψ(k|B)|2
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P(k) ∝ |ψ(k)|2 = |ψ(k|A) + ψ(k|B)|2. (13.3)

So this is the second strange thing about probability in quantum physics—its not just
that quantum situations are intrinsically, as opposed to effectively, unpredictable; it
is also that the probabilities seem not to follow the usual laws of probability. It is the
complex amplitudes that add, rather than the probabilities.

13.4.4 Quantum States and Complex Probability Amplitudes

Electromagnetic (EM) waves are not just a mathematical fiction; with radio antennas
for example, we can detect the electric field displacements directly. On the other
hand, writing EM waves as complex quantities is a calculational convenience. We
would get the same answer, with more algebra, if we ignored complex numbers and
added the real waves, attending to all the trig function algebra correctly. The essential
point is that waves are characterised by two numbers, which we could see alternately
as amplitude and phase, or a vector (a, b), or a complex number a + ib, as long as
the appropriate mathematics is followed.

The observation of an interference pattern doesn’t necessarily mean that electrons
are actually waves, with something material waving. In the Dirac formalism, we see
quantum states as vectors in some abstract space. We can express such an abstract
state vector as |ψ〉, and attach to it a complex amplitude c, expressing the state overall
as c |ψ〉. The probability associated with the state is then |c|2. If we combine two
states then the overall state can be expressed as

|ψ〉 = c1 |ψ1〉 + c2 |ψ2〉 .

13.5 The Strange Behaviour of Measurement

As part of our “bullet” analysis above, a key assumption was that any given electron
must go through either one slit or the other. However, quantum mechanics asserts
that we can’t make that assumption.What if we try to detect each electron as it passes
through the slit? This is in principle possible, for example by having light scatter off
the electron as it passes. Then we will know which slit the electron has gone through
before we see it landing on our detector. When such an experiment is performed, the
final probability distribution P(k) is different from the distribution we get when we
don’t detect which slit the electron has gone through; and in fact, P(k) obeys equation
(13.1) perfectly. If we treat the electrons like bullets, they behave like bullets.
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13.5.1 Collapse of the Wavefunction

It seems then that the basic laws of probability are not violated after all; the peculiar
interference pattern comes about because the behaviour of electrons is not determined
until we make a measurement. At first glance, this might seem no different from the
way we have to treat some classical situations—we don’t know the true state of a
system, and so must treat it probabilistically. However, for a quantum system, it is
not that we don’t know the state of the system; it is that it is not determined until we
make a measurement. This change from indeterminacy to a definite situation at the
point of measurement is known as the collapse of the wave function.

We can illustrate this by returning to the coin analogywe used in an earlier section.
A colleague tosses a coin, and after seeing whether it lands head or tails, puts it in a
box, and hands it to you. Looking at the closed box, we don’t know what the state of
the coin is. A frequentist might say “if I imagine this same procedure being carried
out many times, it is going to be heads 50% of the time”. A Bayesian might say “if
I try to attach a credibility to the hypothesis that it is heads, I might as well say 0.5,
because I have nothing else to go on”. For a quantum system, it is as if our colleague
carefully placed the coin in the box still spinning. It will keep spinning until we open
the box at which point it stops on either heads or tails. So it is not that we don’t know
whether the coin is heads or tails; it is not fixed until we make the measurement.

13.5.2 The Uncertainty Principle

The idea of the collapse of the wave function is closely connected to the famous
Heisenberg Uncertainty Principle. This asserts that the position x and momentum p
of a particle cannot be measured with arbitrary accuracy at the same time, and that
the more accurately you measure one, the less accurately you will know the other.
Suppose that the probability distribution for finding the particle at position x is p(x).
Then we characterise the uncertainty by the standard deviation σx . The Uncertainty
Principle then states that

σxσp ≥ �/2, where � = h/2π.

There are various other uncertainty pairs, such as energy and time, or the x and
y components of electron spin. When we make a measurement of one of the two
quantities, we partially collapse the joint wave function; then σ1 becomes zero, and σ2

becomes infinite—i.e. we have no information at all on its value. Before collapse, the
twoquantities can be seen as having a joint probability distribution, butmeasuring one
quantity does not correspond simply to fixing its value and taking a slice across the
joint distribution. It is the wave function that collapses rather than the probabilities.
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13.5.3 Measurement Collapse and the Stern–Gerlach
Experiment

Collapse at the point ofmeasurement is seen particularly starkly in the Stern–Gerlach
experiment, which involves electron spins. Considering the electron spins also pre-
pares us nicely for the probability-based tests of hidden variable theories, which we
will look at in Sect. 13.7.

Electrons have amagnetic momentμ (spin), whichmeans they are deflected when
passing through a magnetic field. In a classical world, you might imagine that the
spins have random orientations, and so get deflected by various amounts. In fact, they
get deflected by a fixed amount, either up or down with respect to the line defined
by the magnetic field. We can understand this as follows. The x and y components
of spin are an uncertainty pair, so we cannot know the value of μx and μy arbitrarily
well at the same time. Their values are not just unknown; they are undetermined.
When we measure the deflection parallel to the magnetic field we are collapsing our
uncertainty on μx , and so at the same time can know nothing about μy . Seeing a
spread of deflection sizes would however, statistically, tell us the spread of μy sizes,
which would be inconsistent with the assertion that these are undetermined before
the measurement.

Now suppose we have a second magnet, at angle θ to the first. We can think of the
electrons as being prepared as all having spin along direction n parallel to the first
magnetic field B1—but either “up” or “down” along n—and then measured along
direction m parallel to the second magnetic field B2. You might guess that the “up”
electrons have a component along B2 of μn.m = μ cos θ , and so give an upwards
deflection of a smaller size than the first experiment. However, the deflections caused
by the second magnetic field are of the same quantised size as the first experiment;
and furthermore it is still unpredictable whether an individual electron goes up or
down with respect to m. What is determined by the angle θ is not the size of the
deflection, but the probability of being deflected up or down.

Pup = 1 + cos θ

2
= cos2 θ/2, Pdown = 1 − cos θ

2
= sin2 θ/2. (13.4)

Note that the up and down probabilities sum to 1.0.

13.5.4 Indeterminacy and State Mixtures

Another way to look at the indeterminacy/collapse issue is to think of particles as
existing in a mixture of states. When we have “prepared” an electron along n, but
before we have measured it along m, the electron might be in either an up-state or
a down-state. We could label these states |ψup〉 or |ψdown〉. If there are two possible
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states associated with some system, and which have complex amplitudes c1 and c2,
then the overall quantum state can be written

|ψ〉 = c1 |ψ1〉 + c2 |ψ2〉 .

This should be seen as being amixture of states.Whenwemake themeasurement, the
probability of getting state-1 is p1 = |c1|2 and the probability of state-2 is p2 = |c2|2.
The probability of getting either 1 or 2 is p12 = |c1 + c2|2. If this is a complete list of
possible states, we should find p12 = 1.0 of course. In the Stern Gerlach experiment,
c1 = cos(θ/2) and c2 = i sin(θ/2), and you can easily confirm that in this case
p12 = 1.0.

13.6 Quantum Entanglement and the Failure of
Determinism

The theory of quantum mechanics is in some ways even stranger than the behaviour
it attempts to explain—with the intrinsic unpredictability, the behaviour of com-
plex probability amplitudes, and the indeterminacy until the point of measurement.
Some scientists—notably Einstein—have argued that this strangeness must result
because quantum mechanics is incomplete, because there are hidden variables. One
could imagine that inside each particle there is a secret machinery which completely
determines the behaviour of particles; its just that our current knowledge of physics
doesn’t have a theory for this secret machinery, and so in practice we have to treat the
spins as random—just like in the rest of classical probability. If on the other hand, as
quantummechanics argues, the situation really is not deterministic, there are disturb-
ing consequences for cause and effect. Such problems are clearest in experiments
involving quantum entanglement, so lets start by explaining that idea.

13.6.1 Normal Entanglement and Quantum Entanglement

Sometimes physical states are connected to each other. We speak of them being
“entangled” when there is also a probabilistic aspect to the situation, such that the
states, and their probabilities, remain connected as our knowledge updates. It is quite
easy to have a kind of entanglement in a classical world. Imagine experimenter
Charlie placing an apple in one box and a banana in another, and giving a box each
to the famous experimenters Alice and Bob. Before opening the box, Alice does not
know whether she has an apple or a banana, and can only assign probability of 0.5
to either. However, as soon as she opens her box and sees a banana, she knows for
sure that Bob has an apple in his box. The probabilities change together because the
states are entangled.
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Quantum entanglement however is stranger than this. It is as if Charlie has placed a
still-spinning coin in each box.Whether the coin is heads or tails is not just unknown;
it is not fixed until the box is opened and the coin stops spinning. When Alice opens
her box and the coin stops on heads, she knows that when Bob opens his box, his
spinning coin will stop on tails. In other words, it is not the entanglement per se
that is strange; it is entanglement coupled with indeterminacy until the point of
measurement.

13.6.2 Entangled Spins

Some atomic physics events (for example, some nuclear decays) lead to a pair of par-
ticles created with equal and opposite spins, so that angular momentum is conserved.
They also move out from the event centre in opposite directions, conserving linear
momentum. As they travel outwards, their orientation is undetermined; however they
are linked together, in that whatever orientation one particle is eventually found to
have when a measurement is made, the other particle will have precisely the opposite
orientation. Their quantum states are entangled. They are like the spinning coins in
the previous section.

Consider placing two magnets, with the same orientation, at either end of the par-
ticle travel, and measuring deflections. As in the regular Stern–Gerlach experiment,
setting the magnetic field direction forces the undetermined orientation to collapse;
all that is left undetermined is whether we find up or down. Suppose Alice is making
the deflection measurements at one end. For any one particle, whether she gets up
or down is both unpredictable and undetermined. When the deflection has occurred,
and she finally knows whether the particle is up or down, the wave function has
collapsed completely. However, at this point, Alice knows that the partner particle
must have opposite spin. At the far end Bob is also measuring deflections, which
as far as he is concerned are unpredictable. However, Alice can predict them. If she
found a sequence uududd she could write on a piece of paper “Bob gets dduduu”.
Note that she can predict Bob’s events no matter how far apart Alice and Bob are.

13.6.3 The EPR Paradox and Hidden Variables

Is Alice’s predictive power mysterious? If the particles were entangled in a classical
sense, it would not be at all mysterious. Suppose Bob has an apple-banana sequence
of boxes. It is already fixed; it’s just that he doesn’t knowwhat the sequence is.Mean-
while Alice opens her boxes, and finds a sequence bbabaa. At this point everybody
knows that Bob must have sequence aababb. There is no mystery. However, quan-
tum mechanics asserts that Bob’s sequence is not just unknown, but undetermined
until he makes the measurement. So somehow it seems that Alice’s measurements
have caused Bob’s measurements to come out the way they do. Now the distance
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between Alice and Bob becomes important; if they are far enough apart, and they
make their measurements close in time, it seems that this causal influence can travel
faster than the speed of light.

In the 1930s, Einstein, Podolsky and Rosen wrote a famous paper describing a
thought experiment of this kind, and took it to show a paradox in the logic of quan-
tum mechanics—we surely cannot have both indeterminacy and a distant causal
link at the same time. Since then, a number of real “EPR experiments” have been
performed which confirm both the expected entanglement and the apparent unpre-
dictability, so that we are faced squarely with this apparently paradoxical situation.
Let us summarise the problem arising from EPR style experiments.

• Quantum mechanics asserts that microscopic quantities are indeterminate—not
fixed until measurement.

• At the point ofmeasurement, the properties of particle pairs are strongly correlated,
even at large distances.

• The previous two things can only both be true if causality is non-local.

In popular accounts, it is often suggested that Einstein was uncomfortable with
quantummechanics because of thefirst bullet point—that he objected philosophically
to indeterminacy. In fact, his philosophical worry was with the third bullet point—
action at a distance. He therefore concluded that indeterminacy must be wrong. His
preferred route out was to suggest that quantum mechanics must be incomplete,
because there are hidden variables.

13.7 Statistical Tests of Hidden Variable Theories

How do we test the general idea of hidden variables? That is, the possibility of a
yet undiscovered deterministic theory that involves some variables we don’t even
know about yet? Normally in physics we test specific well posed theories, that make
concrete predictions for measurements in particular circumstances. However in the
1960s John Bell showed that there are generic statistical consistency tests that any
hidden variable theory must pass. Classical systems always pass these tests; certain
quantum experiments fail them; but quantum theory correctly explains the observa-
tions.

Suppose we make a series of measurements on one or more variables x, y, . . ..
Each measurement gives a different result, but we see a consistent probability distri-
bution p(x, y, . . .). In a deterministic theory, theremay be other variablesα, β, γ, . . .

that we can’t track or even perhaps know about, and the apparent randomness in
x, y, . . . is actually a consequence of our incomplete knowledge of α, β, γ, . . .. Do
these assumptions produce constraints on the observed data p(x, y, . . .) that we can
check? It turns out that the answer is yes, for specific kinds of situation involving
three yes/no questions, as we will explain in the next section. Quantum entanglement
experiments can be designed in just this way, to give answers to three yes/no ques-
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tions. Before we look at the quantum experiments however, lets look at the statistical
tests themselves, which have wider application.

13.7.1 Consistency Tests for Trivariate Yes/No Distributions

Consider a collection of objects which can be classified according to three properties,
A, B, C , each of which is an either/or or a yes/no kind of thing. An example might be
a survey of people who are asked three questions—did you go to university? do you
own a car? do you believe in climate change? There are eight possible combinations
of the answers to the questions A, B, C . We can express these neatly if we write A
to mean the number (or normalised fraction) of people answering yes to question
A, Ā to mean the number of people answering no to A, ABC̄ to mean the number
answering yes to A and B and no to C , and so on:

ABC ABC̄

AB̄C AB̄C̄

ĀBC ĀBC̄

ĀB̄C ĀB̄C̄

In essence what we have is a 2 × 2 × 2 trivariate distribution, with A and Ā along
one axis and so on. Visualising a 3D block of numbers is hard, so quite often what we
might have available is a set of three 2D summary tables, as illustrated in Fig. 13.3.
In the survey example above, we might tabulate the number who did/did not go
to university versus the number who do/do not own a car, regardless of whether
they believe in climate change. What we are doing is marginalising over C to get a
distribution over A and B.

Suppose we suspect there has been an error in compiling the three tables from
the original raw data? Or perhaps the three 2 × 2 tables come from three different
surveys, where for example we asked a number of people questions A and B without
even asking them question C? How do we check that our three tables have in fact
been drawn from some underlying 2 × 2 × 2 dataset? Note that there are twelve
cells in the various marginalised tables. Each of them is some different combination
of the grid of eight raw cells. In Fig. 13.3, we label some of these combinations
with symbols, to aid the discussion below.1 We assume that we are dealing with the
numbers in each cell, but the same logic applies if we are dealing with frequencies
normalised by the total number in the sample.

Test-1. For each of the three 2 × 2 tables, the data in the cells should add up to same
value, or be statistically consistent with the same values if the tables come from three
separate surveys.

1If some of the discussion below seems a little abstract, trying working on the related problem in
the exercises as you read.
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Fig. 13.3 Illustrating how consistency tests can be place on trivariate joint probability distributions.
See text for explanation of symbols

Test-2. The overall number with property A can be obtained from adding the values
in the first row of Table1. It can also be obtained from adding the values in the first
row of Table2. So these two should agree with each other. They should agree within
statistical errors if the tables represent distinct surveys; but if drawn from a single
survey they should be identical. Likewise the value for B can be obtained from the
first column of Table1, or the first row of Table3, and so on.

Test-3. This is the test originally considered by Bell. Consider the cells marked by
squares. The sum of the values in the two cells with open squares must be at least as
big as the value in the cell with the filled square.
Open squares: AB̄C + AB̄C̄ + BC̄ A + BC̄ Ā.

Filled square: AC̄ B + AC̄ B̄.

The open-squares list contains the same two terms as the filled square list, plus
two other terms, so the former is clearly larger than the latter, unless those extra terms
happen to be zero, in which case the open-square and filled-square values are equal.
We can write

AB̄ + BC̄ ≥ AC̄,
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where we understand “AB̄” to mean “the number with A and not with B, regardless
of the value of C”. This inequality must be obeyed for any set of 2 × 2 tables from
a single trivariate distribution.

Test-4. This is another inequality, developed by Clauser et al. (1969), which is more
complicated but is better suited to application to the physics experiments we describe
in the next section. It can be stated as

(AB̄ + ĀB) + (AC̄ + ĀC) + (BC̄ + B̄C) ≤ 2. (13.5)

where each of the two-symbol terms should be seen as marginalised over the third
(missing) symbol. Proving this is simple but tedious. Each term corresponds to one
of the cells with the filled circles. The values of these are indicated to the right of
the relevant table. The next step is to multiply these out, so we get AC̄C + AB̄C̄ +
ĀBC + · · · . Then we collect the terms. We find that all the 8 raw terms occur twice,
except for two terms which don’t occur:

missing terms : ABC and Ā B̄C̄

If all the 8 raw terms were there twice, our sum would have been exactly 2.0. If the
two missing terms happen to be equal to 0.0, then our sum can still be 2.0; but more
generally it must be less than 2.0. So the complete collection of terms must be less
than or equal to 2.0, as required.

13.7.2 Application to Entangled Spin Experiments

So what do these consistency tests for joint probability distributions have to do
with quantum mechanics? Imagine an experiment which is producing a stream of
thousands of particles with some unknown spin. (For now we are back to thinking
about a single particle, rather than entangled pairs.) We then have a Stern–Gerlach
style setup to measure the spin-component of the particles in a chosen direction. For
each particle, we can only get the answer “up” or “down”. Suppose now we can
rotate our magnet to various angles. Lets label one particular position A, and two
other positions B and C , at, say, angles of 45 and 90◦ with respect to A. For a given
particle, we could in principle ask three questions—“is the spin up or down with
respect to position A?”, “is the spin up or down with respect to position B?”, and
likewise for C . This then is an example of a collection of three either/or questions,
as discussed in the previous section.

Next, let us suppose that the indeterminacy principle is wrong, and that there
are indeed hidden variables such that the spin of each particle is fixed at the point
of production, before the particles travel out on the journey towards the detector.
However, we don’t know these hidden variables. All we can do is imagine our stream
of thousands of particles emerging with a probability distribution of spins. What we
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would like to do is to measure A or Ā, B or B̄, and C or C̄ for each particle in turn,
and then put the result into one of our 8 raw cells, i.e. AB̄C etc. As we accumulate
counts in these boxes, we would end up with a well defined trivariate probability
distribution.

However, there is a snag in carrying out such an experiment. For any one particle,
we can only ask one of the three questions A,B,C at a time. If we could at least
make two measurements at the same time, we could use one of the tests involving
two questions at a time, marginalised over the third, as in (13.5). Note that we would
have to run the experiment three separate times, first asking questions A and B, then
asking questions A and C , and then asking questions B and C . However, this is
ok—as long as the experimental set up is stable, the probability distribution should
be repeatable.

But how do we ask two questions at the same time? This is where the entangled
pairs come in. Instead of a stream of thousands of single particles, we produce a
stream of thousands of entangled pairs moving in opposite directions. We have two
magnets at the opposite ends, and can place these at differing angles. A counter-
magnet at rotation −45◦ is exactly equivalent to a magnet at 45◦, because the spins
of the two particles are forced to be exactly 180◦ apart. So we can then run our
experiment three times, with magnet pairs at (0, −45), (0, −90), and (45, −90),
corresponding to the three question pairs above—AB, AC , BC .

The generic hidden variable hypothesis does not make a specific prediction for
the trivariate probability distribution—different theories couldmake different predic-
tions. However, it does predict a limit for the combination of marginal distributions
specified in equation (13.5). Quantum mechanics meanwhile does make a specific
prediction for the probabilities in equation (13.4). Recall that what we combine is the
wave functions, rather than the probabilities themselves; the probability of finding a
given measurement is given by the square of the modulus of the complex amplitude.
As we described in Sect. 13.5.4, a given particle can be seen as existing in a mixture
of possible states. The situation we have described here, with magnet and counter-
magnet at two different angles, is equivalent to the process we described earlier
“preparing” the particle in one orientation, and then measuring at an angle θ from
that orientation. In this case the probabilities of getting “up” or “down” respectively
are given by equation (13.4) as 1/2(1 ± cos θ). Assuming angles 0, 45, and 90◦,
and wading through the combinations AB, AC , BC , accounting for the appropriate
angle differences, the result is that the quantum mechanical prediction is that

(AB̄ + ĀB) + (AC̄ + ĀC) + (BC̄ + B̄C) = 2
√
2. (13.6)

which can be compared to the inequality of equation (13.5), which insists that this
combined quantity must be less than 2.0. Which prediction corresponds to reality?
The real experiments of course have all sorts of subtleties and complexities we have
brushed over here, but the bottom line is that experiments agree with the quantum
mechanics prediction. It seems thatNature is telling us thatwe cannot have both deter-
minism and local causality. It remains technically possible that we could construct
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a hidden variable theory that is not local—where, at the moment of measurement,
some unknown physics fixes the spin of the particle, and communicates it immedi-
ately to the other particle—but most people would find this just as uncomfortable as
throwing away determinism.

13.8 Whither Quantum Mechanics?

The key mysteries in quantum mechanics are all closely related to probability—
firstly that our calculations concern probabilities of events, rather than the behaviour
of objects; secondly that probabilities combine in a very strangemanner, via complex
amplitudes; and thirdly, that outcomes are not just unknown, but undetermined until
the moment of measurement (i.e. “wave function collapse”). The mathematical rules
that physicists have assembled have been astonishingly successful, producing not
just theoretical explanations, but extremely practical consequences for the everyday
world. Nonetheless, debates still continue about the fundamental interpretation of
quantum mechanics.

My summary in the paragraph above is a statement of the orthodox view, or
“Copenhagen interpretation”. Many scientists would feel that there is really nothing
much else to say or do; all that is meaningful is to do the calculations. However,
there have been a number of attempts to make the philosophical foundations of
quantum mechanics more satisfying. We will briefly describe just a few, which have
key probability related aspects.

13.8.1 The Many Worlds Interpretation

The many worlds interpretation denies the reality of wave-function collapse, but in
a way that is philosophically controversial. All the possible outcomes are seen as
happening in one of many “parallel universes”. We are living through one particular
branching track. It is a matter of debate whether probabilities should be attached to
the various branches.

13.8.2 Bohmian Mechanics

Bohmian mechanics re-asserts the concrete reality of particles, which have definite
positions at all times, and, following De Broglie’s original suggestion, takes the
wave function as an accompanying “pilot wave” that controls their behaviour. Along
with Schrödinger’s equation which determines the evolution of the wave function,
there is a second guiding equation which determines particle tracks. The tracks are in
principle deterministic, but in practice probabilistic, because they are very sensitive to
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initial conditions, which are unknown. (The related “stochastic mechanics” actually
involves a kind of spacetime foam, which produces very erratic tracks.) Bohmian
mechanics is a kind of hidden-variable theory; however because of the quantum
entanglement results, we know that such a theory must be non-local, i.e. involve
action at a distance.

13.8.3 Decoherence Theory

In decoherence theory, the key point made is that although we make measurements
of specific local systems, in reality such systems are not isolated, but interact with
their environments. Phase-coupling with the environment tends to make the system
less coherent. The quantum nature of the system can be seen as “leaking” into the
environment. Although one can argue that a universal wavefunction still exists, as
the local system decoheres, it leads to a specific realisation, i.e. an effective collapse
of the local wavefunction. There is a close analogy here with the behaviour of ther-
modynamic systems and the inevitable increase of entropy, which we will consider
in Chap.14. The phases of a large number of particles will become increasingly
randomised and undergo an irreversible change from coherence to un-coherence.
The decoherence process can be seen as sharing information between system and
environment.

13.8.4 Quantum Bayesianism

When we say that “probability amplitudes” determine the probability of a given
experimental outcome, what kind of probability do we mean? The frequency of
possible outcomes in many imagined similar experiments? Or our degree of belief
in/expectation of the various possible outcomes? In Quantum Bayesianism, often
known as QBism, the central idea is that all probabilities are personal, rather than
objective—i.e. they encode an experimenter’s expectations. In this view quantum
states, just like probabilities, are not objectively real, but are to do with an observer’s
knowledge of the situation. The infamous wave function collapse is then just the
observer updating their beliefs after making a measurement. In a way, this is an
extreme version of the Copenhagen interpretation. QBists suggest that even a prob-
ability of 1.0 should be considered personal, and argue that this way we can avoid
non-locality in quantum physics.

These are deep waters, and the attitude of many physicists is that all of the above
interpretations are metaphysics rather than physics—quantummechanics just works.
However, it remains possible that clarifying these foundational issues will produce
new predictive power, in which case people will sit up and take notice. Decoherence
theory is particularly important in this regard, as it involves issues that definitely
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have to be taken into account, regardless of whether or not doing so clears up our
philosophical worries.

13.9 Key Concepts

Some of the key concepts from this chapter are:

• The realisation that microscopic randomness is clearly manifested at the macro-
scopic level, in phenomena like radioactive decay

• How calculating the probabilities of combined events involves adding complex
probability amplitudes, rather than the probabilities themselves

• The importance of indeterminacy until the point ofmeasurement, otherwise known
as collapse of the wave function

• How quantum entanglement, as opposed to simple classical entanglement, seems
to imply action at a distance

• The idea of consistency tests for trivariate probability distributions
• The application of consistency tests to quantum-entangled particle pairs
• How real quantum entanglement experiments rule out hidden variable theories that
are both deterministic and causally local

The key formulae in this chapter include: the formula describing how probabilities
should behave in a two slit experiment with bullets (13.1), with waves (13.2) andwith
quantum mechanical wave functions (13.3); the formulae for the “up” and “down”
probabilities in a Stern–Gerlach experiment (13.4); the formula for the hidden vari-
able consistency test used by Clauser et al. (13.5); and the quantum mechanical
prediction for the same test (13.6).

13.10 Further Reading

There are of course many excellent textbooks on quantum mechanics. Rae and
Napolitano (2015), which is a new edition of the book by Rae which has been
popular for many years, is a short and clear mid-level undergraduate text, and in
particular has a whole chapter on problems with the conceptual foundations of quan-
tum mechanics. Binney and Skinner (2013) is the next step up in rigour, and has no
messing about with waves—straight in with the Dirac formalism. Far from being
too maths-centred, it is very good at making the physical point clear. At the other
end of the scale, Susskind and Friedman (2015) is a very impressive semi-popular
account of quantum mechanics—an attempt to give the intelligent public the “real
thing” while not being too intimidating.

However, possibly still the clearest account of the fundamentals of quantum
mechanics is Vol. III of the famous Feynman Lectures. The latest edition is Feynman
et al. (2011). The text is also available at the Feynman Lectures website. Feynman’s
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description of the two-slit experiment was actually a thought experiment—the his-
torical experiment by Davisson and Germer which demonstrated the wave-particle
duality in electrons involved scattering from the planes of crystals rather than slits.
Feynman’s experiment was finally carried out faithfully by Bach et al. (2013). A
semi-popular description of that experiment, and the history leading up to is in the
online article by Johnston (2013); this also includes a nice video illustrating how the
interference pattern is built up one event at a time.

The topics of quantum entanglement and tests of hidden variable theories are
covered in advanced textbooks, but the key original papers are all short, clearly
written and well worth reading. It all started with Einstein et al. (1935); the idea that
hidden variable theories had to pass a consistency test appeared with Bell (1964);
the key paper on how to turn this into a real world experiment was Clauser et al.
(1969); and the definitive experimental proof that quantum mechanics worked and
local hidden variable theories didn’t is in Aspect et al. (1982). An influential semi-
popular account is D’Espagnat (1979), but probably the best informal account is by
Bell himself, in a written version of a talk given in Paris in 1980 (Bell 1981). This
has the wonderful title of “Bertlmann’s Socks and the Nature of Reality”.

When it comes to the conceptual foundations of quantummechanics, probably the
majority of physicists would agree with David Mermin, who once said his attitude
was summed up as “shut up and calculate” (Mermin 1989; though in Mermin 2004
he muses on whether it was really Feynman who said it!). More recently Mermin has
become a convert to Quantum Bayesianism (Mermin 2014). The ideas of Quantum
Bayesianism were swirling around in the writings of Jaynes, Finetti and Ramsey, but
have crystallised in the work of Fuchs, Caves, and Schack. A very lively summary
with both accessible parts and very technical parts is given by Fuchs (2010). As
for the other rival interpretations we discuss, the founding works are by Everett
(1957) for many-worlds; Bohm (1952a, b) for Bohmian-mechanics; and Zeh (1970)
for Quantum decoherence. To read further, the Wikipedia page on interpretations of
quantum mechanics is a very good start. A livelier introduction can be found in a
video recording of a panel debate held at the World Science Festival in New York in
2014.

13.11 Exercises

13.1 Twenty three percent of the human body is Carbon. Mostly this is 12C, but
about one atom in 1012 is 14C, which is radioactive, with a half-life of 5370 years.
Roughly how does the rate of Carbon events from the human body compare with
that from Potassium?

The 14C/12C ratio in living beings is set by cosmic rate bombardment of the
atmosphere. Why does this mean we can use radioactive events to date some archae-
ological remains?
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13.2 The waiting time before a radioactive event should be given by (6.4), where λ

is the mean rate of events. If we have just had a long gap between two events, does
this change the probability that the next gap will also be long? Does the same logic
apply to non-quantum sporadic events, such as the waiting time to the next No. 41
bus?

13.3 In a Stern–Gerlach experiment with an angle θ between the two magnets, what
angle makes spin-up with respect to the second magnet twice as likely as spin-down?

13.4 Aphoton-entanglement experiment takes amillisecond tomake ameasurement
of each pair. How far apart would you need to put the stations to make sure there
isn’t some subtle causal influence between Alice’s measurement and Bob’s?

13.5 A polling company carries out a survey on behalf of the Labour Party, asking a
number of people three questions: (A)Are you ahome-owner? (B)At the last election,
did you vote Labour? and (C) Do you think the railways should be nationalised?
Rather than sending the raw data, the polling company provide the results as three
summary tables, as shown in Fig. 13.4. Party officials are concerned, as the results are
somewhat different from what they expected; they privately worry that the numbers
have been faked by the polling company. Test whether the numbers given have been
drawn from a valid trivariate probability distribution.

13.6 Suppose two parties are exchanging cryptographic keys using an entangled-
pair method, as suggested in Sect. 13.3.3. How could the Bell or Clauser inequalities
be used to test for the presence of eavesdroppers?

Fig. 13.4 Summary results
from the survey in question
Exercise13.5
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Chapter 14
Entropy, Complexity, and the Arrow
of Time

14.1 Outline of Content

• Thermodynamic Entropy
• Statistical Entropy
• Order, Entropy and Complexity
• Entropy and gravitating systems
• Probability and Time

In this final chapter we look at an issue that has caused much confusion amongst
physicists, let alone the general public—the idea of entropy, and its relation to ideas
of disorder, decay, and the arrow of time. Probability has been central to understand-
ing the concept of entropy ever since Boltzmann proposed that it should be identified
with the multiplicity of microscopic configurations of a gas. Some decades later,
as we discussed in Chap.11, Shannon developed a concept that he called “entropy”
in the context of Information Theory—is this the same thing? And what do people
mean by the entropy of a black hole? Do black holes really swallow information?
Meanwhile, pinning down what we mean by “disorder” proves rather slippery. We
instinctively feel it is the opposite of “structure”, or “complexity”, but how can we
rigorously quantify these ideas? We often illustrate the second law of thermodynam-
ics by noting that you can easily make an omelette from an egg, but not an egg from
an omelette. However, Nature very certainly does make eggs. How do we square
these observations?

Many of the issues outlined above remain controversial and are the subject of
ongoing research. Our aim in this chapter is not to solve all the controversies, but to
introduce the reader to the key concepts as clearly as we can, to make further reading
in these choppy waters a little easier. As we step through the topics, there are two
key things to keep in mind.

The first thing is distinguish carefully between equilibrium and non-equilibrium
situations. Classical entropic, and indeed probabilistic, concepts apply only to equi-
librium cases, whereas many of the most interesting phenomena in Nature involve
constant evolution and/or a flow-through of energy. The second thing to pay attention
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to is the role of subjectivity. Eugene Wigner once said that “entropy is an anthropo-
morphic concept”, which sounds like an argument that it is just in our minds rather
than really in Nature. However, as we have repeatedly seen in discussing probabilis-
tic concepts, “subjective” doesn’t mean “vague and woolly”, but rather, “observer
dependent”.

14.2 Thermodynamic Entropy

Before we examine the role of probability, we should remind ourselves how the idea
of entropy arises in classical Thermodynamics.

14.2.1 Entropy as a Thermodynamic State Variable

The equilibrium states of thermodynamic systems can be described by a number of
state variables, or thermodynamic co-ordinates such as temperature T , pressure P ,
volume V , and internal energy U . Usually only two are needed; for a specific type
of system, there will be equations linking the other variables. For example, if our
box contains an ideal gas, then pressure, volume, and temperature are linked by the
equation of state PV = nRT where R is the gas constant and n is the number of
moles of gas; and you can show that that U = 3PV/2. By analysing the behaviour
of heat engines, nineteenth century physicists and engineers showed that around any
closed reversible path, i.e. one we traverse quasi-statically so it can be re-traced in
the opposite direction, ∮

dQ

T
= 0,

where dQ is the amount of heat taken in by a system, and T is the temperature at
which the process happens. A quantity which doesn’t depend on the path you take
is by definition a state variable. So there must be some new state variable S—the
entropy of the system—defined by

dS = dQ

T
or Sa − Sb =

∫ 2

1

dQ

T
, (14.1)

if we change the system between state 1 and state 2. Because S is a state variable,
it doesn’t matter which path we take between state 1 and state 2. This analysis only
defines the difference in entropy between states; but it is possible to define a zero
point for a given type of system, for example by requiring entropy to be zero at
absolute zero temperature.
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Entropy is a slightly peculiar state variable. Rather than being defined at a single
point in time, it seems to be defined in terms of the change during a procedure—the
transferring of heat. The way to make sense of this is invert the definition and think
of dQ = T dS. Suppose we have two states of a system, which we can define by any
conventional thermodynamic co-ordinates we wish—temperature, volume, etc. Now
suppose we ask, howmuch heat would I need to put in to move the system from state
a to state b? The answer is

Q =
∫ b

a
T dS.

So entropy seems to be a characteristic of a system which tells you how hard it is
to change. Note that the units of entropy are Joules per degree Kelvin, which again
is a slightly puzzling kind of unit for a state variable, until we realise that this is a
historical accident due to the way temperature was first defined. Today we realise
that temperature is really all about the mean energy of the particles constituting a
system. If we had defined temperature as an energy scale, rather than as “degrees”
between two fixed points, then the concept of entropy would still have emerged, but
its units would have been Joules per Joule. In other words, in essence, entropy is a
dimensionless quantity characterising a system which tells us how difficult it is to
move it from one state to another. This makes much more sense when we consider
statistical entropy.

14.2.2 Example Entropy Calculation

If we have an equation of state, and specify a particular change, then we can actually
calculate the entropy, or at least its change. We will look at a simple example that we
can revisit when looking at statistical entropy. Suppose a container holding a mole
of an ideal gas expands isothermally from volume Va to volume Vb. If we do this
carefully by allowing a piston to move out slowly, then for each small change in
volume dV the gas does work PdV . Because there is no change in internal energy,
dQ = PdV . An expanding gas tends to cool down, so the missing heat needs to be
supplied by the surroundings, which we can arrange by attaching the system to a heat
reservoir at fixed temperature T . Finally, for one mole of gas we have PV = RT
and so we get

Sa − Sb =
∫ b

a

PdV

T
= R

∫ b

a

dV

V
= R ln (Va/Vb).

Alternatively, we could make our change in two stages; first let the system expand
adiabatically; then slowly heat the system to return to the original temperature. As
you can check in any thermodynamics textbook, this procedure gives the same answer
as our isothermal expansion calculation.
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14.2.3 Entropy and the Second Law of Thermodynamics

In studying the behaviour of heat engines, it was noticed empirically that although it
is possible to turn mechanical work into heat, any attempt to turn heat into mechani-
cal work is always imperfect—there is always some “waste heat”. This is the original
sense of the second law of thermodynamics. Clausius analysed heat engine changes
in terms of the entropy, and expressed the second law more formally, as the obser-
vation that total entropy never decreases. To make that bold statement, we have to
consider the entropy change in both our system and its environment. We also have to
understand that thermodynamic entropy, as a state variable, is only meaningful when
our system is in equilibrium. We can sum up the observed behaviour of entropy as
follows:

• For a closed reversible path, ΔS = 0.
• For a reversible path between two states of our system, ΔS(sys) �= 0
but ΔS(env) = −ΔS(sys)
and so ΔS(world) = 0.

• For an irreversible path, ΔS(sys) �= 0
but ΔS(env) ≥ −ΔS(sys)
and so ΔS(world) ≥ 0.

For example, if we take the classic irreversible example of free adiabatic expan-
sion, by removing the barrier between two halves of a container, you can easily show
that ΔS(sys) = nR ln 2, but ΔS(env) = 0 because there is no heat exchange; then
we get ΔS(world) = nR ln 2. On the other hand, suppose we pass heat Q through a
container between two reservoirs at temperatures T1 and T2. Then ΔS(sys) = 0, but
ΔS(env) = ΔS(world) = Q/T2 − Q/T1.

It is important to keep inmind that it is the total entropy of systemplus environment
that increases. It is always possible to decrease the entropy in a system, at the expense
of its environment.When chickensmake eggs, they tend to spread chaos around them.

14.2.4 The Idea of Free Energy

An isolated system will find equilibrium by maximising its entropy. When placed in
an environment, things can getmore complicated because energy and particles can be
exchanged. As well as tending to maximise its entropy, a system will tend to evolve
towards the state of lowest potential energy, by shedding energy to its environment.
The first law of thermodynamics tells us that dU = dQ − dW , where by convention,
dW is positive for work done by the system, and dQ is the heat put in to the system.
We can relate this to the definitions of entropy (dS = dQ/T ) and mechanical work
(dW = PdV ) and so state

dU = T dS − PdV, (14.2)
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which is sometimes known as the fundamental relation of thermodynamics. Turning
this round, we could write

PdV = −(dU − T dS) = −dF where F = (U − T S).

If it weren’t for entropy considerations, if we were to extract internal energy dU
from the system (i.e. change its internal energy by amount −dU ), we would be able
to turn it all into work; but we fail to achieve this by the amount T dS, which is
therefore sometimes known as the “unavailable energy”. We can construct a new
state variable F = U − T S which is known as the “Helmholtz free energy”, which
tells us the amount of energy which is actually available for conversion to work.
More generally, we can define the “Gibbs free energy” G = U − T S + PV , which
is also known as the thermodynamic potential.

Many problems in thermodynamics boil down to finding the equilibrium state
which jointly maximises entropy and minimises potential energy. To do this, the
quantities G or H can be seen as functions which we need to maximise.

14.3 Statistical Entropy

Having done a lot of physics, we need to return to probability. During the nineteenth
century, atomism and kinetic theory were developing in parallel with thermodynam-
ics, which made possible a statistical understanding of how matter behaves.

14.3.1 Boltzmann Entropy

Boltzmann’s key insight was that entropy must be connected with the number of
microscopic configurations available to a system, and he proposed the formula

S = kB lnW, (14.3)

where W is the number of microstates corresponding to the observed macrostate—
the multiplicity—and kB is the constant now named after Boltzmann in his honour. If
the multiplicity of macrostate j isWj and the total number of possible microstates is
Wtot = ∑

Wj , then the probability of being in macrostate j is Pj = Wj/Wtot. Max-
imising entropy is therefore the same as maximising probability, just as we discussed
for simple cases in Chap. 3. Why did Boltzmann choose lnW rather than just W?
Partly, it is because this choice, together with the choice of the normalising constant
kB, i.e. the Boltzmann constant, is what gives us numerical agreement with the ther-
modynamic definition of entropy (see Sect. 14.3.4). However, the logarithmic form
is in general the best choice to make S additive. Suppose we have two sub-systems
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with entropy S1 and S2 and multiplicity W1 and W2. To get the total multiplicity of
a macrostate of the combined system, we would need to consider each microstate of
system 1, and pair it with every microstate in system 2. So Wsys = W1 × W2 and so
Ssys = S1 + S2.

In various circumstances, exactly what we mean by a “microstate” or by a
“macrostate”, may be rather different. It doesn’t matter too much; the essence of
the idea is multiplicity, and the concept lurking behind that is distinguishability—the
idea that some things are the same as each other as far as an observer is concerned,
whereas other things are distinguishable by the observer. The other key concept hid-
ing behind the simple assumption that Pi = Wi/Wtot is that our systemwill somehow
“explore” all the possiblemicrostates, spending equal time in each. This is the ergodic
assumption, which we touched on briefly in Sect. 3.6.2. The idea that we will max-
imise entropy is therefore really the same as arguing that more time is spent in some
configurations than others. (The idea is illustrated in Fig. 14.1.) We will discuss the
issues of distinguishability and ergodicity in Sect. 14.4.

Fig. 14.1 Illustrating the concept of exploring the space of possible states. Each possiblemicrostate
is represented by a dot. Polygonal areas represent the possible macrostates, each of which corre-
sponds to a number ofmicrostates. The curved path shows the system exploring the space of possible
states in a meandering fashion. The path explores the whole space in an unbiased way, but spends
more time in macrostates that contain more microstates. In a real system, the difference between
the multiplicity of the macrostates is much more dramatic
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14.3.2 Gibbs Entropy and the Shannon Formula

The Boltzmann concept of entropy assumes that all the microstates are equally prob-
able. In fact we don’t need to make that assumption; if microstate i has probability
pi , we can define the Gibbs entropy as

SG = −kB
∑
i

pi ln pi , (14.4)

which you can see is, apart from the base of the log, and the normalising factor, the
same as the uncertainty or Shannon entropy from information theory (see Chap. 11).
Note that here we are talking about the probability pi of each microstate; be careful
not to confuse this with the probability Pk of each macrostate, which we discussed
above. The Gibbs formula reduces to the Boltzmann formula in the case where all
the pi are the same. The Boltzmann formula gives the right answer for the behaviour
of ideal gases, i.e. with non-interacting particles. The Gibbs formula is more widely
applicable to a range of different thermodynamic systems.

14.3.3 Counting Microstates

The idea of microstates, and the multiplicity/entropy associated with them, could
be associated with a number of different properties of a system and its constituent
particles. We could be considering the spatial positions of particles, which gives rise
to the locational entropy, or to their velocities/energies, or to the six dimensional
combination of position x, y, z and velocity vx , vy, vz . In principle, we could com-
pletely specify a microstate by specifying the x, y, z, vx , vy, vz co-ordinates of every
particle. If there are N particles, you can think of the complete list as specifying a
position in a space of 6 × N dimensions, which is known as phase space. Alterna-
tively, rather than positions and velocities, we might for example be considering the
possible spin states of a collection of particles, and likewise calculate a correspond-
ing spin entropy, and, listing all the particles, a “spin phase space” for the system.
We will return in Sect. 14.4 to the issue of freedom of choice of which properties we
are considering.

Sometimes the possible states constitute a discrete set, in which case the multi-
plicityW has a clear absolute meaning. Sometimes however, there is actually a con-
tinuous range of the relevant properties, for example spatial position. One approach
is to divide imagine dividing space into cells. Then if we decrease the cell size to
any size we wish, the absolute value of W will change, but our conclusions about
entropy differences (multiplicity ratios) will not change. A more rigorous approach
is to consider the density of states in a differential phase space volume. Again, this
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makes no essential difference to the probabilistic nature of what is going on. Finally
of course, in a quantum view of the behaviour of a collection of particles, location
and energy states are effectively discretised. This leads to definite and testable pre-
dictions for the measured entropy of quantum systems, but again, does not alter the
probabilistic logic.

14.3.4 Equivalence of Statistical and Thermodynamic
Entropy

Howdoes the statistical entropy compare to the thermodynamic entropywe discussed
earlier? It is possible to show that they are the same thing for any thermodynamic
system. Here we will simply look at one specific case, the example of isothermal
expansion considered in Sect. 14.2.2. Because the expansion is isothermal, we will
assume that the distribution of the particles in energy does not change, and so will
look at just the change in locational entropy. Consider then N molecules distributed
into n cells. We can make the cells as small as we like, so imagine making the
cells so small that each cell has either one molecule or none. Then the number of
arrangements of N occupied cells and n − N empty cells is

W = n!
N !(n − N )! .

Using Stirling’s formula we have

lnW = n ln n − N ln N − (n − N ) ln (n − N )

= −n ln
n − N

n
+ N ln

n − N

N
.

However, n >> N so this becomes

lnW = N + N ln
n

N
.

Now consider the expansion from volume Va to Volume Vb. If we keep our cells the
same size, then the number of cells increases by the same ratio. So

lnWb − lnWb = N ln
nb
N

− N ln
na
N

= N ln
nb
na

= N ln
Vb

Va
.
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Now if we multiply by kB, and N is the number of molecules in one mole, then

Sb − Sa = NkB ln Vb/Va

= R ln Vb/Va,

which is exactly the answer we got in Sect. 14.2.2. Thermodynamic entropy and
statistical entropy are therefore numerically the same.

14.3.5 Equilibrium and Non-equilibrium States

Thermodynamic entropy concerns only equilibrium states. It is possible to calculate
the entropy change between the starting and ending points of an irreversible process,
but as far as thermodynamics is concerned, the non-equilibrium states in between
have nodefinedvalues of standard thermodynamic quantities at all. Statistical entropy
is more general; we can calculate the multiplicity of any state, not just equilibrium
states. Suppose we have n distinguishable particles, which can be distributed into
k different energy levels. In this case, the set of population values {n1, n2, . . . , nk}
constitute the macrostate, and the specified energy levels of all n particles constitutes
themicrostate.Wecan calculate themultiplicityW of any set ofn1, n2, . . . , nk values,
and think of this as the statistical entropy. However, for a fixed total energy E , the
distribution which maximisesW is the Boltzmann distribution, as shown in Chap.3,
Sect. 3.8.1, with ni ∝ e−Ai where the quantity A is essentially the temperature of the
system.

There are two ways in which statistical entropy plays its role. The first is that
over time, as the system meanders through the space of possible microstates (i.e.
the phase space), it will spend nearly all of its time in the most probable regions
of that phase space. If the system is initially not in such a high probability region,
its randomly meandering path will nearly always take it closer to the maximum of
probability/maximum entropy. Once reaching such a state, it is unlikely to leave; the
system is therefore in equilibrium. Only at this point is the statistical entropy the
same thing as the thermodynamic entropy.

Now suppose the system has arrived in equilibrium, but by our external action we
cause our system to change to a new equilibrium state. Wemight do this reversibly—
for example by slowly moving a piston—or we might do it irreversibly, for example
by removing a dividing barrier and allowing the system to expand. In either case,
we can calculate the multiplicity/entropy of the beginning and ending states and
compare them. This is the situation to which the second law of thermodynamics
applies. Note that when we carry out an irreversible change, we are almost always
artificially creating a low entropy (improbable) configuration, and then letting the
system settle into a new equilibrium. A “reversible” change is of course a theoretical
abstraction. In any slow quasi-static change, the track is really made up of a sequence
of miniature irreversible changes, each time settling into a new equilibrium.
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In Sect. 14.2.4 we discussed how thermodynamic systems find a compromise
between potential energy and entropy, maximising the free energy G or H . We
can see how this works statistically. Suppose a box contains non-interacting gas
particles, which can in principle occupy any part of the box. However, the box is
in a gravitational field, which tends to make the particles settle towards the bottom
of the box. If the gas is at very high temperature, gravity will be irrelevant, and
the particles will tend to be distributed uniformly throughout the volume, therefore
having a high value of locational entropy. However, if the gas can dissipate energy
to its surroundings and cool down, the particles will tend to be found at the bottom
of the box, a configuration which has a low locational entropy.

We can analyse such systems by finding the maximum of free energy. But we
could also see them as examples of maximising multiplicity subject to one or more
constraints, analogous to the manner in which we derived the Boltzmann distribution
in Chap.3. Another interesting example is strongly interacting particles, which can
“stick”, as random motions bring them together, to form molecules, or crystalline
structures. Such regular structure may seem to have very low entropy; but in fact such
a structure will represent the maximum of entropy consistent with the energetically
favourable configuration.

14.4 Issues in the Interpretation of Entropy

14.4.1 The Ergodic Assumption and Relaxation Times

The statistical interpretation of entropy relies on the assumption that a system some-
how “explores” all the possible microstates, so that the probability of being found
in or near a particular macrostate is proportional to the volume of phase space in
the vicinity of that state. Boltzmann initially assumed that probability was there-
fore equivalent to the fraction of time a system spends in a particular region, as it
meanders around phase space. Gibbs suggested that instead we can imagine many
possible similar systems, and consider the ensemble average of the properties of
such systems. The question then becomes “if I pick a specific system at random, how
likely is it I will find it in such-and-such macrostate?”. The argument that the time
average is the same as the ensemble average is the ergodic hypothesis.

Much time has been spent debating whether the ergodic hypothesis is formally
correct, but the practical question is really how long a system will take to reach
equilibrium if it starts out of equilibrium. This is often known as the relaxation time.
Of course any statistical system will fluctuate about its mean state, so it will never
be exactly in equilibrium, but we can get a rough idea of how long real systems will
take to get somewhere near equilibrium.

For example, consider a gas similar to air at room temperature and density. Sup-
pose the molecules are not in thermal equilibrium, i.e. not showing a Maxwell-
Boltzmann distribution of velocities. Collisions between fast and slow moving
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molecules will tend to share out the momentum, and produce a Gaussian distri-
bution in velocity space, as described in Chap. 5, after a few collisions per molecule.
The mean free path for air molecules is around 70 nm, and they are typically moving
at around 500 m s−1. The typical timescale between collisions is therefore ∼10−10s.
The gas will thermalisewithin a few nanoseconds. What about spatial arrangement?
Suppose we consider the classic experiment of dividing a container into two com-
partments, with all the gas in one half, and then removing the divider. If the container
is say 1m across, thenmolecules travelling to the far side can do so in a fewmsec, and
the gas should become uniform within a fraction of a second. More generally a non-
uniform structure in a gas may get randomised on something like the sound-crossing
time, i.e. how long it takes pressure waves to travel across the region.

Suppose however we consider a slightly different experiment—the mixing of two
gases. Instead of the second half of our container being empty, it contains a similar
number of molecules of a different type. When removing the container, we start
with a very low entropy/unlikely configuration, with all the type A molecules at one
end, and all the type B molecules at the other end. Now, for a Type A molecule
to travel to the far end, it cannot travel unimpeded, but must diffuse across in the
manner we considered in Chap.6. From equation (6.3), the time this will take will
be t = D2/2vλ where D is the size of the container, v the molecular velocity, and
λ is the mean free path. For air molecules of two similar but different types mixing
across a 1m box, this gives a timescale of ∼4h. The time to reach equilibrium can
therefore be quite significant in some circumstances.

In astronomical situations, relaxation times can be much longer. Interstellar gas
clouds are of very low density—a few atoms per cubic metre—can be very cold, and
also quite large. Thermalisation timescales can be a fraction of a second, and spatial
re-arrangement timescales can be extremely long—hundreds of thousands of years.
To some extent, we can consider clusters of stars, or even clusters of galaxies, as
gas-like statistical systems. They may suffer physical collisions very rarely, but they
interactwith each other gravitationally, allowing us to calculate relaxation timescales.
For star and galaxy clusters, it is a contentious point whether or not we expect such
systems to thermalise or become uniform within the current age of the Universe.

Let us look at a much simpler earth-bound example. Consider a row of coins in
a box that are all heads-up. That is a very low-entropy configuration. But nothing is
going to change. The system will not explore parameter space all by itself. On the
other hand if you shake the box, you can soon randomise the head-tail distribution. In
other situations, shaking a container can encourage non-random effects. Consider a
box of muesli containing oat flakes, raisins, and nuts. Shaking the box tends to bring
the nuts to the top, producing what is apparently a low-entropy structure—but of
course it may be that this structure is energetically favourable, and the environment
may have increased its entropy.

All in all, it is clear that although many systems reach equilibrium extremely
quickly, others do not, so we must be very careful applying the concepts of equi-
librium thermodynamics. However, we can often employ a statistical approach to
the behaviour of a system, including calculating its statistical entropy, even if it is
not in equilibrium. The subject of non-equilibrium thermodynamics is of growing
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importance. The key point is really about the competition of timescales. Random pro-
cesses such as collisions, interactions, turbulent motions and so on will tend to make
systems gradually more uniform or at least make them occupy more high-entropy
configurations. On the other hand, external influences, whether man-made or natu-
ral, can easily be driving systems towardsmore low-probability configurations—they
are not random processes. So systems are often experiencing a competition between
structuring and randomisation, and it is a question of which process is faster. From
this point of view, living organisms are particularly interesting. By consuming food,
they are using a constant stream of energy available for restructuring.

14.4.2 Subjectivity of Entropy Values

Along with the exploration of the space of microstates, the second key assumption
lurking in Boltzmann’s original idea is that states can be grouped together in a unique
way. The various microstates may in principle be distinguishable, but in practice all
we can distinguish is the various macrostates. Some microstates correspond to one
macrostate, and some to another. However, a thought experiment shows that this
micro-macro correspondence is subjective, i.e. observer dependent.

Consider Fig. 14.2, which shows molecules distributed across two boxes. The
macrostate is the pair of numbers nA, nB where nA is the number of molecules in
box A and nB the number in box B, and the total is n = nA + nB . The microstate is
the list of which molecules are in which box—M1 = A, M2 = B, M3 = B, . . .. In
the top-left figure, nA = n, nB = 0. There is only one microstate which gives this
macrostate. The top-right figure shows the uniformmacrostate nA = n/2, nB = n/2.
There are many microstates which correspond to this same macrostate. If we start
in the left-hand situation and then remove the divider, it is clear that the system will
soon evolve to the state with larger multiplicity/higher entropy.

Now consider the situation in the lower part of Fig. 14.2. Here, half the molecules
are dark-grey ones, and half of them are light grey ones. At bottom left, all the dark
grey ones are in box A, and all the light grey ones in box B. At bottom right, the
different shades are uniformly distributed. The situation is the same as in the top
row; there is only one microstate corresponding to the macrostate at bottom-left, but
many corresponding to the macro-state at bottom right.

However, this conclusion assumes that the observer can distinguish the different
shades of molecule. Perhaps the molecules are red and green, and the observer is
red-green colour-blind. If the types of molecule are not distinguishable, then the
situations at bottom-left and bottom-right are the same. Different observers will
assign different entropy values to these situations. However, they will still agree on
the laws of Physics. The non-colour-blind observer says “oh look, a very unlikely
state, but it is evolving towards higher entropy, just like I expected”. The colour-blind
observer says “The system is already at maximal entropy. Nothingmuch is changing,
just like I expected”.
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Fig. 14.2 Illustrating subjectivity of entropy. In the upper row, particles spread when the divider is
removed. In the lower row, two types of particle mix when the remover is divided. An observer who
cannot, or chooses not to, distinguish the light grey and dark grey particles, will give a different
value for entropy, but will still agree that the second law is obeyed

The dependence on the state of knowledge of the observer is exactly the same as
we have discussed for probability in general. Probability is about reasoning in the
presence of incomplete knowledge. The statistical approach to entropy is really just
an example of probabilistic reasoning in action. In many situations, our knowledge is
highly observer dependent, and so correspondingly are the probabilities we assign.
In other situations, although our knowledge is in principle observer dependent, in
practice every plausible observer is in the same state of ignorance. Althoughwe don’t
know the microscopic state of a system, every observer will attribute the same value
of temperature, pressure etc to a thermodynamic system.

We have so far described the subjectivity issue as being to do with whether the
observer is able to distinguish certain qualities, such as the colour of the particles.
However it is also to do with whether we choose to distinguish those properties. If we
are trying to study the re-distribution of particles in the remove-divider experiment,
and if the particles are identical apart from their colour, and the colour of a particle has
no effect on its dynamics, then we may decide to ignore the colour of the particles.
It has no bearing on our problem. On the other hand, if we are actually studying
the mixing of gases, we may very much want to know which particles are which.
Suppose we are studying some particles, and one day, by looking closer, we discover
that some of them have a small black dot and some don’t. Will this invalidate our
earlier experiments? It will not. But it will matter very much if later we wish to study
the physics of small black dots.

Entropy is determined by the experiment we choose to do, or rather, the way we
choose to analyse the results. Each set of properties can have its own characteristic
entropy, and the second law will be obeyed in each case, because of the inexorable
logic of probability. Entropy is both completely subjective and very concrete.
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14.4.3 Order, Disorder, and Structure

In popular writing, and very often in textbooks too, you will see entropy equated
with “disorder”. Generally speaking, authors do not define or quantify what they
mean by order or disorder, but tellingly, the word is often used in a combined phrase
such as “disorder or randomness” as if it was clear that they are the same thing.
Another popular term is “spreading”—the second law of thermodynamics is seen as
a tendency for systems to spread out, becoming more uniform. However, a regular
crystalline grid could be seen as being extremely uniform, but in fact has a low
entropy. In normal English, “order” is seen as being to do with either showing a
pattern, or following some kind of rule. We have an instinctive sense that some
patterns are more richly structured than others, but this sense is hard to pin down.
Although everybody might agree that a marching squad of soldiers is more ordered
than pedestrians milling about on a busy shopping street, peoplemight find it difficult
to rank different groupings of people—for example a single troop of soldiers versus
a sequence of colourful bands in a Mardi Gras parade—in “degree of orderliness”,
or “degree of structure”, and indeed they might give different answers for those two
questions.

There may be a variety of ways to capture what we mean in natural language by
order or structure, and each of them may be useful for answering various different
questions, but the only concept that clearly matches entropy is the one that we have
already discussed in Chap. 11 and in this Chapter—the average uncertainty, or Shan-
non entropy, associated with a probability distribution. Imagine 1D space divided
intomany small cells, with particles occupying the cells. Our structure can be defined
by the average occupation per cell n(xi ), with the probability of a specific particle
being in a specific cell given by Pi = n(xi )/N where N is the total number of parti-
cles. The apparently uniform regular grid can now be seen as a kind of honeycomb
structure. A set of cells at regular spacing have high probability, but there are also
many completely empty cells in between. We can contrast this with a truly uniform
distribution where all cells have the same probability. In the language we used in
Chap.3, a specific set of occupation numbers ni can be seen as a “partition” or as a
“microstate” of the collection of particles.

Consider a specific labelled particle, and take a specific cell at xi . If you suggest
“my particle is in cell i”, how often would you be wrong? Then repeat the test many
times, each time for a different cell. How often would you be wrong on average?
Alternatively you could ask how many yes-no questions you would need to ask
on average in order to pin down where your particle is. This is given by equation
(11.3), which specifies the average uncertainty as H = ∑

i Pi log2 Pi . As we saw in
Chap.11, Sect. 11.3.2, if there is no other constraint, H is maximised when all the Pi
are the same; but if for example, we fix the mean and variance, then the maximum H
is given by a Gaussian shape for Pi . Alternatively, one could ask how any different
ways—W—we could place our collection of N particles in the cells that correspond
to the same set of ni values. In Sect. 11.5.1, we have already shown that these two
methods—maximising H and maximising logW , are the same thing.
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All in all, the concepts of order, structure, or spreading are useful only if we define
and quantify them in just the way we have already done for average uncertainty in
information theory.

14.4.4 Complexity

Random processes seem to erase structure and statistically homogenise systems. On
the other hand, structure and patterns seem to emerge spontaneously in Nature—for
example crystallisation, or the forming of snowflakes, or the growth of leaf patterns. It
seems as if the possibility for such structures is hidden insidematter, which just needs
some encouragement. This idea is known as emergence or self organisation. Some
have argued that self-organisation normally involves a continuing flow of matter
through a system (this idea is particularly connected with Buckminster Fuller), and
others that fluctuations/noise can prod a system into finding structured configurations
(this idea is particularly connected with Ilya Prigogine).

Mathematically, the emergence of structure can be connected with the existence
of an attractor within the phase space of a system—quasi-stable solutions to its
evolution. The simplest attractor could be a fixed point, but much more rich and
complicated attractors can exist even for very simple systems. The key point for our
discussion in this chapter is that such an attractor occupies a very small fraction of
the total possible phase space for a system, so the system does not over time explore
all the possible microstates.

Over recent decades, there have many different attempts to quantify the com-
plexity of the spatial and temporal structures that emerge in natural processes. Two
approaches seem particularly relevant to the issues in this chapter. One approach is to
see a structure as a kind of probability distribution, and calculate the Shannon entropy,
as we discussed above in Sect. 14.4.3. The other approach is to ask “what sequence of
instructions could reproduce this structure?”. This idea leads to what is known as the
algorithmic complexity or sometimes the Kolmogorov complexity—the length in bits
of the computer programme that could produce the structure as its output. The string
“aaabbbaaabbbaaabbbaaabbb...” could be output by the instruction “keep repeating
a and b three times each”, whereas “x7bf62nfjhd7fkt;6k8f’ksgsy8...” can only be
output by specifying each character. In other words, a long random string has much
higher Kolmogorov complexity than a patterned one. This is closely connected to
the Shannon sense of information. A random string carries more information, in the
sense that it is more surprising, or that you would need to provide more information
to specify it.

Once again, this is a technical sense of complexity that may not agree with other
natural language senses. An interesting example is shown in Fig. 14.3. This shows
a beautiful fractal pattern, which to the human eye seems astonishingly rich and
complicated. Specifying the image pixel by pixel would take an enormous amount
of information. But in fact the image is uniquely generated by a relatively short piece
of computer code.
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Fig. 14.3 Illustration of the Mandelbrot set, taken from the Wikipedia page on Kolmogorov com-
plexity. Although seeming rich and complex to the human eye, the structure is defined by a relatively
simple algorithm, requiring only a relatively short piece of computer code to create the image. (From
a figure originally made by Wikimedia user Reguilee)

14.4.5 Entropy in Gravitating Systems

For particles of ideal gas in a box, we can consider the locational entropy, the velocity
entropy, or both combined, but location and velocity structure are decoupled. The
maximum entropy solution has a uniform spatial structure, but a Gaussian velocity
structure. Once we introduce potential energy into the picture, and the possibility of
transferring energy to the environment, things can get more interesting, for example
crystallisation into a grid-like structure. Bringing gravity into the picture is even
more interesting because of its long-range Nature.

Let us first consider a system with an external gravitational field—for example,
a container of gas sitting on the surface of the Earth. If particles are dropped into
the box, they will descend and lose potential energy (V ); collisions between par-
ticles will thermalise the gained kinetic energy (T ), and eventually there will be a
balance between V and T , satisfying the virial theorem 2T + V = 0. Once T and
V are in balance, the total T for all the particles will be constant, and as the sys-
tem explores the available kinetic energy microstates, the distribution of the whole
collection of particles Ni (Ti ) will be that which maximises W subject to the con-
straint

∑
NiTi = const, leading to the exponential Boltzmann distribution, as shown

in Chap.3, Sect. 3.8.1. (Alternatively we could argue that in each of vx , vy, vz , max-
imising the Shannon entropy subject to fixedmean and variance gives a 3DGaussian,
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which re-assuringly gives an exponential distribution in energy.1) The total V of the
collection of particles will also be constant, but particles at different heights above
the bottom of the container have different individual values of V . As the particles
explore the possible locational microstates, then maximising W with the constraint
of fixed total V leads to another Boltzmann distribution, but this time in height. The
system therefore settles into an exponential density distribution.

Note by the way that we have implicitly assumed that the system is isothermal—
i.e. the gas temperature is the same at all points in the box. This might be reasonable
if for example the system is embedded within an external reservoir that maintains
a constant temperature. Alternatively it could be that the temperature is vertically
stratified. This is the case for example for the structure of the Earth’s atmosphere,
sitting in the Earth’s gravitational field.We can find a solution which both maximises
entropy and satisfies that balance between T and V , but we won’t pursue that any
further.

Now let us consider a self-gravitating system, such as a star. There are two key
issues. The first is that there is no longer a natural “bottom” to the potential well,
so that in principle there is nothing to stop a self-gravitating system settling into a
radial structure with a central singularity of infinite density. As the gas thermalises,
pressure holds the proto-star up against gravity. However, the second key issue is that
a hot proto-star will radiate energy away, shedding energy to infinity, and encour-
aging a continuing collapse. Counter-intuitively, the more energy a proto-star sheds,
the hotter it gets, because it collapses some more. At each stage in the slow col-
lapse, the proto-star will have the temperature and density structure whichmaximises
entropy for that particular total energy; and the total entropy of star+environment will
increase. An initially uniform gas therefore has a tendency to clump. Total entropy
is increasing as it does so, but note that this evolution is also producing what most
people would recognise as “structure”.

Star clusters, including galaxies if we ignore the dissipative gas components,
are more subtle yet again. Stars in a cluster may seem like the molecules in a gas,
but in fact stars essentially never collide. They can have one-on-one gravitational
interactions, but even those interactions are rare enough that star clusters do not
thermalise locally. Instead, the dynamics of any star is dominated by the potential
produced by the whole cluster, i.e. all the other stars combined. However, as the
stars move under the influence of that potential, the potential itself is evolving on
the same timescale as the stars are moving, and the system has a kind of feedback
loop known as “violent relaxation”. Studying the phase-space structure, energy, and
entropy of such systems is a very active research subject, which we don’t have time
to pursue here; suffice it to say that it is not obvious that the system explores all of
the micro-state space.

1It is interesting to note that this equivalence only works if space has three dimensions.
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14.4.6 Black Hole Thermodynamics

Returning to stars, does anything stop the inexorable collapse, as the star radiates its
energy away to infinity? For a long time, the collapse is halted by nuclear burning.2

Eventually when the nuclear fuel runs out, smaller stars can end up as white dwarfs
or neutron stars, but it is expected that for larger objects nothing halts the collapse
and the object becomes a black hole.

In recent decades, there has been talk of black hole thermodynamics and the
entropy of black holes. What does this mean? It stems from the idea that you can
extract energy from a rotating black hole by the Penrose process which (crudely
speaking) involves throwing in counter-rotating rocks in a carefully designed way.
The mass of the black hole increases, and its surface area increases, but its angular
momentum decreases, and it loses energy, which is donated to the person throwing
the rock in. You can show (see for example Caroll, Sect. 6.7) that the mass, area, and
angular momentum are related by

ΔM = κ

8πG
ΔA + ΩHΔJ,

where M , A and J are the mass, surface area, and angular momentum of the black
hole, κ is the surface gravity at the event horizon, and ΩH is the angular velocity at
the event horizon. (Warning: that equation is in “geometrical units” with h = c = 1.)
Hawking and Bekenstein pointed out the similarity with equation (14.2)

dU = T dS − PdV,

and argued that we can then treat black holemass, area, and surface gravity (M, A, κ)
as equivalent to energy, entropy, and temperature (U, S, T ). In particular, just as
entropy always increases, black hole area always increases. This may seem to be just
an analogy, and it is far from clear what the appropriate micro-states are, in order to
relate this analogous “entropy” to a standard statistical entropy. However, by separate
reasoning, Hawking showed that quantum effects allow black holes to radiate at a
temperature T = κ/2π , producing “Hawking radiation”, suggesting that we take the
analogy seriously. Bekenstein proposed a generalized second law:

Δ

(
S + A

4G

)
≥ 0, (14.5)

so that the combined entropy of matter and black holes always increases. Of course,
even if we stubbornly insist that thermodynamic/statistical entropy and black hole
“entropy” are conceptually distinct things, the above statement about the Universe
may still be true.

2When the star gets hot enough the switch on nuclear burning, then we have a “star” as opposed to
a “proto-star”.
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14.5 Probability and Time

Outside of thermodynamics, the laws of physics are time reversible. However, our
human experience is that there is an inexorable flow of time in one direction. The
second law of thermodynamics says that entropy increases with time—so can it in
fact explain our experience of an “arrow of time”?

14.5.1 Reversibility of Physics

The basic equations of physics are time reversible. If you change t to−t the equations
look the same. You can start with the initial conditions for a system, turn the handle
on the equations that describe it, and predict the state of the system at any future
time. However, you can also start with the current state, and using the same equations,
calculate what the past state of the system was, at any time in the past. A popular
way of getting this across is to imagine making a film of a system evolving, and then
running the film backwards. According to Physics, an observer should not be able to
tell you whether the film is running forwards or backwards. Indeed for many simple
systems this is the case.We can comfortably watch a recording of the planets circling
around the Sun in either direction.

However, for most moderately complex real world systems it is very obvious
indeed if the film is being run backwards. If we see a broken egg leap up from
the frying pan and re-assemble itself, we know that this is something that does not
spontaneously happen. If gas particles were to spontaneously gather at one end of a
container, we would likewise be very suspicious.

The word “spontaneously” is the key one here. We know of course that actually
Nature doesmake eggs, but that they are laboriously assembled; complex structures
can arise when they are energetically favoured, or when there is energy exchange
with the environment; and we can always decrease entropy locally at the expense of
the environment. Despite all this, it is clear that the gas molecules never gather at
one end all by themselves.

If you could zoom in on a just few molecules and watch them move around and
collide with each other, you would see that behaviour follows the basic laws of
physics, and is in fact completely time reversible; if you made a film of that handful
of molecules and then showed it backwards, it would look perfectly fine. So where
does the irreversibility come from?

14.5.2 Monotonicity of Time

Since the development of General Relativity (GR), physicists’ time is not quite as
simple as it was in the Newtonian era. We see “space-time” as a four-dimensional
block. Observers will disagree about how to divide that block into space plus time,
and can even disagree about the order of events. However, any one observer can
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define a unique local time, which we refer to as “proper time”, and place events in
a clear sequence. In other words, time is monotonic; but there is no sense of the
direction of that monotonic sequence—nothing that says what is plus or minus time,
what is forwards or backwards. GR, like the rest of fundamental physics, is time
reversible.

14.5.3 Reversibility of Probability

The statistical view of entropy tells us that the gas molecules never gather at one end
because this is extremely improbable. So is the origin of the second law simply that
probability itself is time-asymmetric? The language in which we normally frame
probability problems encourages that thought. We imagine ourselves about to roll
a die, and ask ourselves “what is the probability I will roll a six?”. If you take a
frequentist approach, you will see the probability as telling us what fraction of future
experiments will in fact result in a six being rolled; if you take a Bayesian approach
you see the probability as quantifying our degree of belief in the proposal that the
experiment we are about to perform will result in a six being rolled.

Butwe can just as easilymake these arguments about the past. If our colleague tells
us that they did a die-rolling experiment last week, then the probability quantifies our
degree of belief that the result must have been a six. Or alternatively, it tells us what
fraction of all past experiments will have given us a six. Probability is symmetric in
time; so this is not the source of the second law.

14.5.4 The Importance of Initial Conditions

The second law is in fact entirely about initial conditions. Once an isolated thermo-
dynamic system is in equilibrium, there is no directionality of entropy. The system
will fluctuate around the equilibrium, with small changes in entropy, but there is no
particular tendency for entropy to increase rather than decrease with time. If the sys-
tem is not isolated, and can exchange energy and/or particles with its surroundings,
then entropy can change substantially—in either direction.

All the familiar examples of entropy increasing involve some kind of relatively
low probability starting point. It could be that some external event has knocked a
system out of equilibrium—for example a shockwave from a passing jet plane injects
energy into the particles of the atmosphere, which are then not in thermal equilibrium.
The gas particles will rapidly find a new equilibrium. Alternatively, natural processes
have assembled some highly structured object, such as an egg. When you drop this
on the floor, you are starting from a very well ordered low probability state, so it
has only one way to go. Another common situation is that we remove a constraint.
Imagine a container of gas with a divider half-way across, where all the gas is initially
in one half of the container. The gas is all in one half because that is where we put it
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for the experiment. Given its constraints, the system is already at maximum entropy.
But now we remove the divider. Suddenly there are more microstates available to
the system, but it finds itself starting in what is now a very low probability state from
the point of view of the enlarged system.

When you observe a system evolving from a more ordered state to a less ordered
state, the question you should ask is—how did it get ordered in the first place? Many
natural processes produce order, but they normally involve a flow of energy, long
timescales, human intervention, or all of those things, andwedon’t tend to see themas
“spontaneous”. Given that many systems are put into low probability configurations
by such processes, when they are allowed to evolve randomly, we will see them
spontaneously relax back into more probable states.

If we assume an arrow of time as an external given, then the production of low-
probability states by non-random processes, and the production of high-probability
states by random processes, is perfectly sensible. But these considerations do not of
themselves create an arrow of time.

14.5.5 Cosmological Arrow of Time

Space has no intrinsic directionality. If you film somemolecular collisions happening
in outer space, and then rotate or flip the film, you can’t tell the difference. However,
on the surface of the Earth, it is very obvious whichway is up andwhichway is down.
The symmetry is broken by an externally imposed field, and the result is an “arrow
of space”. Is there some similar imposed effect which produces a global gradient of
entropy, and hence an arrow of time?

As far as we know, the laws of thermodynamics are the same everywhere, so any
such gradient needs to be universal. A number of scientists have proposed that the
evolution of the Universe as a whole produces exactly such a gradient—a cosmolog-
ical arrow of time. In Sect. 14.5.2 we emphasised that each observer has a distinct
local “proper time”. However, in cosmology, on the largest scales, where we can
assume spatial homogeneity, we can go further and identify a unique global cos-
mic time; furthermore, because of the expansion of the Universe, cosmic time does
have a directionality. The additional idea is that the initial condition of the Universe
happened to be a very low entropy state, and that the Universe as a whole has been
systematically increasing in entropy ever since, producing a systematic gradient.

Is it reasonable that the Universe started in a low entropy state? Standard cosmol-
ogy assumes that the Universe started as a very hot and almost completely uniform
“particle soup”. Imposed on this uniformity were unavoidable quantum fluctuations,
which, as the Universe cooled and formed atoms, acted as the seeds for clumping
of matter, which then gradually formed into stars and galaxies. For most labora-
tory physical systems, a hot uniform state is one of high entropy; but as we saw in
Sect. 14.4.5, self-gravitating systems inexorably clump.

This idea, that the evolution of the Universe causes the arrow of time is a very
appealing possibility, but much work needs to be done to show that it works. It is



306 14 Entropy, Complexity, and the Arrow of Time

not clear that the basic assumptions behind statistical entropy can be used when
considering the whole Universe. (i) Does the Universe as a whole explore all the
possible microstates? Note that we cannot appeal to an “ensemble” of Universes.
(ii) Do local systems “know” about the cosmic gradient, or are they dominated by
local conditions and forces? (iii) We might expect that eventually all structure will
be erased, and the Universe will suffer a “heat death”. However, our observations so
far seem to show the richness of structure in the Universe increasing. But of course
other effects will be producing this structure; perhaps the Universe will go through
a maximum of complexity, and then gradually become a warm sludge.

14.6 Key Concepts

Some of the key concepts from this chapter are:

• The idea of entropy as a thermodynamic state variable
• The observation that the total thermodynamic entropy of system plus environment
never decreases (i.e. the Second Law of Thermodynamics)

• The concept of free energy, and how finding the equilibrium of a system involves
a compromise between potential energy and entropy

• The key idea that a system spends more time in regions of phase space that have
a higher density of related states

• The demonstration that, for equilibrium systems, thermodynamic and statistical
entropy are the same thing

• The importance of the competition between structuring and randomisation
• The idea that absolute entropy values are subjective, but that the second law is
obeyed regardless

• The idea that one could define order, structure, and complexity in a variety of
ways, but that disorder is most sensibly defined in terms of Shannon entropy

• The idea of quantifying complexity by the length of code needed to produce the
structure in question (Kolmogorov complexity)

• How self-gravitating systems trying to reach equilibrium will inexorably become
more clumped rather than more uniform

• The idea that the surface area of a black hole is analogous to entropy, in that it
always increases

• The fact that probability is reversible in time, so that probability itself is not the
origin of the arrow of time

• The possibility that the arrow of time is caused by the Universe starting in a low
entropy state, leading to a cosmological gradient of entropy

Key formulae in this chapter include: the definition of thermodynamic entropy in
terms of heat input corresponding to a state change (14.1); the relation of internal
energy change to work done and change of entropy (14.2); the Boltzmann (14.3)
and Gibbs (14.4) definitions of statistical entropy; and Bekenstein’s formula for the
generalised second law including black hole entropy (14.5).
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14.7 Further Reading

Entropy in thermodynamics and statistical physics is of course covered in many
standard textbooks. I would recommend the same three textbooks listed in Chap.3—
Baierlein (2010), Ford (2013), and Brown (1968). It is worth getting hold of Brown’s
book as it is written so clearly. Going back further in time, many researchers still
value the original textbook byGibbs (1902), and the research papers by Jaynes (1957,
1965) were extremely influential. In particular, Jaynes (1965) quotes E. P. Wigner
as stating that “entropy is an anthropomorphic concept”, an idea which I hope I
have explained in this Chapter. Also very good on the anthropomorphic Nature of
entropy is Coles (2010), which is overall a very lively semi-technical explanation
of many of the key issues in this book. Also very lively is Ben-Naim (2012), who
makes a very strong sales pitch for thermodynamic entropy being a subset of what he
refers to as the “ShannonMeasure of Information”, i.e. what we have called “average
uncertainty” or “Shannon entropy”. This is one of a series of books by Ben-Naim at
a variety of levels. They are full of colourful detail, partly because of some difficult
battles he has clearly had with other authors. I have been strongly influenced in my
own views of entropy by all of Jaynes, Coles, and Ben-Naim.

Readers interested in the key issues of this chapter may want to read more about
non-equilibrium thermodynamics and complexity theory. Non-equilibrium thermo-
dynamics is covered in a number of typically rather advanced books. The key early
book, and still useful, is Prigogine (1962). Prigogine was a prolific character who
wrote many works—research papers, textbooks, and popular books. One popular
book—Prigogine and Stengers (1993)—was influential for both public and scien-
tists alike. Complexity, self organisation and so forth are tricky areas to pursue, as
writings on these topics contain a mixture of the very technical, the somewhat woolly
and the almost mystical. Holland (2014) is a nice short introduction; Ball et al. (2013)
is a very good collection of articles; and if you want to sample the wacky end, you
should try Fuller and Applewhite (1976). Yes, thats the same Buckminster Fuller
who popularised the geodesic dome.

To read more about the statistical behaviour of self-gravitating systems in astro-
physics, the “bible” isBinney andTremaine (2008). The famous research paperwhich
came up with the idea of “violent relaxation” was Lynden-Bell (1967). To read about
black hole entropy, a good starting point is the textbook on general relativity by
Carroll (2013).

Finally, the infamous question of the arrow of time. People have fretted about the
mystery of time ever since St Augustine, and before, and Boltzmann was certainly
very vexed by it, but the phrase “arrow of time” was actually coined by Edding-
ton (1928). Eddington’s book remains one of the best ever public expositions of
Entropy, Relativity, and Quantum Mechanics, and contains many deep insights and
quotable passages. In more recent times, the books by Price (1997) and Zeh (2007)
are excellent discussions of possibilities for explaining the arrow of time. As well as
entropy and cosmology, which we have discussed in this chapter, the other areas of
physics where an arrow of time seems to appear are in radiation (waves emerge from
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sources; they never converge on sinks), and in quantum mechanics (the wavefunc-
tion collapses; it never un-collapses). Zeh’s book is more technical, and Price’s book
more philosophical, but they are both very stimulating. Zeh (who sadly died in 2018)
had an interesting website with other links which does seem to be still available; also
worth looking up on the web is the website of the wonderfully named “Centre For
Time” at the University of Sydney.

A popular exposition of the key theories of time is given in Carroll (2011). More
recently, Smolin (2014) has argued that all attempts to “explain” time as an illusion
in a fundamentally timeless world are fruitless; we should recast physics on the
assumption that time is real. My own instinct is that this is indeed a promising
approach.

14.8 Exercises

14.1 Nitrogen molecules at standard atmospheric pressure and temperature (i.e. 1
bar and T = 273.15K) have a mean free path of 5.9 × 10−8m. (a) If a box full of
Nitrogen molecules are disturbed so that they temporarily have a non-Maxwellian
velocity distribution, roughly how long will they take to return to thermal equi-
librium? (b) Suppose a box 2m long has a central divider separating two different
isotopes ofNitrogen. If the divider is removed, roughly how longwill the two isotopes
take to mix?

14.2 What happens to the entropy of the system in the two cases above?

14.3 Suppose the Nitrogen in the problem above is pumped down to a high vacuum,
so that the pressure is 10−5mbar. According to standard kinetic theory, the mean free
path should be inversely proportional to pressure.What happens to the thermalisation
timescale and the mixing timescale?

14.4 Consider a box divided into two compartments initially containing N particles
each. Once every millisecond a particle is chosen at random from one compartment
or the other and transferred to the other compartment. How longwill it be before there
is an even chance that the population of one compartment differs from its starting
point by at least 1%, if N = 1000, N = 106, or N = 109, or N = 1012?

14.5 The randomwalk sample paths shown in Fig. 6.1 are clearly diverging forward
in time. Does this show that probability is intrinsically time asymmetric, and hence
a possible origin of the arrow of time?

14.6 As described in the text, although space has no intrinsic directionality, a local
“arrow of space” is imposed by the Earth’s gravity. Suppose the Earth’s gravity were
to change—by accretion of matter perhaps. How would surrounding matter know a
change had happened? Is there an equivalent process for the proposed cosmological
arrow of time?
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Solutions

Some of the solutions provided are very brief. Some are more explanatory, as the
exercise makes a point that expands on the text.

Exercises from Chap. 1: Randomness and Probability

1.1 Drawing Aces. (a)When the card is replaced, the probability is 1/13 × 1/13 =
1/169. (b) When not replaced, the probability is 1/13 × 3/51 = 1/221.

1.2 Rolling dice. For one die, 3 and 6 are divisible by 3, so the answer is 2/6 = 1/3.
For two dice, we could have T = 3, 6, 9, 12 and they have frequencies 2/36, 5/36,
4/36, 1/36. So overall the probability is 12/36 = 1/3.

1.3 The farmer’s will. The fractions add up to 17/18. Although this is a silly
example, in more complicated problems it can be easy to miss the fact that your
frequencies don’t add up to 1.0.

1.4 Three non-exclusive events.We represent the events as C=Cleaning, F= Fill-
ing, and E = Extraction. First we add P(C) + P(E) + P(F), then we subtract each
of the intersection regions, P(C andF) etc. (See Fig.A.1). However we have then
subtracted the central region one time too many, and need to put it back. The result is

P(C or F or E) =
P(C) + P(F) + P(E)

− P(C and F) − P(C and E) − P(F and E)

+ P(C and F and E)

which gives 0.44 + 0.24 + 0.21 − 0.08 − 0.11 − 0.07 + 0.03 = 0.66.

1.5 Airplane parts. If R is “ready for shipment on time” and D is “ready for
shipment and delivered on time”, then we are told P(R) = 0.80 and P(R and D) =
P(R, D) = 0.72, and what we want to know is P(D|R). So we have P(D|R) =
© Springer Nature Switzerland AG 2019
A. Lawrence, Probability in Physics, Undergraduate Lecture Notes in Physics,
https://doi.org/10.1007/978-3-030-04544-9
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Fig. A.1 Dental Venn
diagram

P(R,D)

P(R)
= 0.72

0.80 = 0.90 (Note that if we were asked for P(R|D), this would not be
possible to calculate from the information we have. We would need to know P(D).)

1.6 Cancer Test. Write C for the event of having cancer, N for not having cancer,
and +/− for getting a positive/negative test result. Then we have:

p(+|C) = 0.9 i.e. if you do have cancer, there is a 90% chance you will get a
positive test result.

p(−|N ) = 0.9 i.e. if you do not have cancer, there is a 90% chance you will get
a negative test result. Note that p(+|N ) = 0.1.

p(C) = 0.01 i.e. there is a 1% overall chance that you have you cancer, regardless
of tests. Note that p(N ) = 0.99.

What we want is p(C |+), the probability that we really do have cancer, given that
we have a positive test. Using Baye’s theorem,

p(C |+) = p(+|C)p(C)

p(+)

and we can also see that the overall probability of getting + is

p(+) = p(+|C)p(C) + p(+|N )p(N )

i.e. we could get a positive test with large probability if we really do have cancer, or
with a small probability if we don’t have cancer. So we get

p(C |+) = 0.9 × 0.01

0.9 × 0.01 + 0.1 × 0.99
= 0.009

0.009 + 0.099
= 1/12.

So even if you get a positive test, the odds are still reasonably in favour of you
being healthy. You can also see this problem graphically, as shown in Fig.A.2. The
conditional probabilities are traced as branches, where the number by the branch
indicates the probability given the previous branch, and the probabilities of the
end nodes are given multiplying the probabilities of the chain of branches. From
this you can see that there are two ways of getting +, and adding these, p(+) =
0.099 + 0.009 = 0.108. Of the two ways, the route through C has p = 0.009, and
so p(C |+) = 0.009/0.108 = 1/12.
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Fig. A.2 Tree diagram for
solving the cancer-test
problem

1.7 Selecting socks. This is just a question of enumerating the possibilities BB, BG,
GB, GG. For example

BB : P = 5

8
· 4
7

= 5

14

BG and GB will give us two different colours. These both have P = 15/56, so the
probability of two different colours is 15/28.

1.8 The three doors: do you switch? This is often known as the “Monty Hall
Problem”, after a real American game show host. You should definitely switch! There
are various ways of looking at this problem, but I think the simplest is as follows. If
we write C or car and T for toy, then the only possibilities are (a) CTT, (b) TCT, and
(c) TTC, and they are equally probable. For (a), you lose by switching; for both (b)
and (c) you win by switching. Therefore the chance of winning by switching is 2/3.

1.9 Russian Roulette. Suppose the probability that Player-1 loses is q. This is also
the probability that the Player-2 wins. But we can look at the probability that Player-
2 wins another way. Either Player-1 loses on the first shot (p = 1/6), or Player-1
survives (p = 5/6) and Player-2 wins the rest of the sequence. At this point, Player-2
is in the same situation as Player-1 at the start of the game, so the probability of losing
is q and of winning is p = 1 − q. So finally we have

q = 1

6
+ 5

6
(1 − q)

Solving this gives q = 6/11. If the gun has n chambers, the solution is q = n/

(2n − 1).

Exercises from Chap. 2: Distributions, Moments, and Errors

2.1 Estimating Head size. The marginalised distributions are the very bottom row
and very rightmost column in the Table. As we have only a binned version of the
dataset, to estimate the mean we take the the number in each bin as representative of
the value at the centre of the bin, and e.g. for headlength use

(1 × 16.25 + 2 × 16.75 + 14 × 17.25 + · · · 3 × 21.25)/3000. = 19.22

To estimate the median, add the numbers in successive bins up to the sixth bin, which
gives 1033. To get halfway, we need 1500; so we have another 467 to go. The next
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bin has a value 1026, so we need to go 46% of the way through a bin of width 0.5;
so finally our estimate of the median is 19.23, pretty close to the mean. The mode
is also quite close; the highest bin is 19.0–19.5, and the bins either side are fairly
similar, so the peak is about halfway through. The same exercise with head breadth
gives mean, median and mode of 15.10, 15.09, and about 15.17.

2.2 Integrating PDF. First we find the value of k from the requirement that the
integral of f (x) is 1.0, which gives k = 3. Then the probability between 0.5 and 1.0 is

∫ 1.0

0.5
3e−3xdx = [−e−3x

]1.0
0.5 = −e−3 + e−1.5 = 0.173

2.3 Marginal PDFs. To find the marginal density for x , we integrate over all values
of y. So

g(x) =
∫ ∞

−∞
f (x, y)dy =

∫ 1

0

2

3
(x + 2y)dy = 2

3
(x + 1)

and likewise

h(y) =
∫ ∞

−∞
f (x, y)dx =

∫ 1

0

2

3
(x + 2y)dx = 1

3
(1 + 4y)

2.4 Dice function expectation. We have

E[g(x)] =
6∑

x=1

(2x2 + 1)p(x)

but the probability p(x) = 1/6 for all values of x . The expectation value is therefore

1

6

[
(2.12 + 1) + · · · (2.62 + 1)

] = 94

3

2.5 Handy variance formula. The variance is defined as the expected value of
the square of the deviation from the mean. The mean is just E(x), so σ 2 = E[(x −
E(x))2]. So then

σ 2 = E[(x − E(x))2]
= E[x2 − 2xE(x) + E(x)2]
= E(x2) − E(2xE(x)) + E(x)2]
= E(x2) − 2E(x)E(x) + E(x)2]
= E(x2) − 2E(x)2 + E(x)2]
= E(x2) − E(x)2

which is the result required.
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2.6 Moment about arbitrary point. The nth moment with respect to x = xa is

μa
n = 1

N

N∑
i=1

(xi − xa)
n

For n = 0, each sum in the term is just 1, so μa
0 = 1. For n = 1 we get

μa
1 = 1

N

∑
xi − 1

N

∑
xa = x̄ − 1

N
· Nxa = x̄ − xa

For n = 2 we have

μa
2 = 1

N

∑
(xi = xa)

2

= 1

N

∑
x2i − 1

N

∑
2xi xa + 1

N
x2a

= 1

N

∑
x2i − 2xa x̄ + x2a

but
∑

x2i /N = s2 + x̄2 (see Problem 2.5) and so we get

μa
2 = s2 + x̄2 − 2xa x̄ + x2a = s2 + (x̄ − xa)

2

2.7 Average tosses before heads. To get heads on exactly the nth toss, we need
a sequence of n − 1 tails and 1 head, but each has P = 1/2, so the probability
distribution for n is P(n) + 1/2n . The expected value of n is therefore

E[n] =
∞∑
i=1

n

2n
= 2.0

To get a six on exactly the nth roll, we have p = 6 n − 1 times, and p = 1/6 once,
and the expected value of n is

E[n] =
∞∑
i=1

n · 5
n−1

6n
= 6.0

For dungeons and dragons fans, you can likewise show that the the average number
of rolls before getting the maximum value on a d-sided die is just d.

2.8 Errors on measurement comparisons. The difference is Δm = mB − mA =
234eV. For ax + by we have σ 2

f = a2σ 2
x + b2σ 2

y with a = 1 and b = −1, which
gives σ = 195.3. The difference is therefore similar to the error, and our instinct
would be that the evidence for the offset is not strong. To make this more rigorous,
we need the techniques of Part III of the book, on hypothesis testing. For the ratio
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f = x/y we have (
σ f / f

)2 = (σx/x)
2 + (

σy/y
)2

So f = 1560/1326 = 1.176andσ f = 1.176 × (
(150/1326)2 + (125/1560)2

)1/2 =
0.133. So the ratio differs from 1.0 by an amount similiar to its error; this is also not
strong evidence.

2.9 Magnitude errors. The relevant formula is

f = a ln (±bx) =⇒ σ f = a(σx/x)

Note that the formula applies to log to the base e, whereas the magnitude formula
uses log to the base 10. So we can rewrite the magnitude formula as

m = k × ln (F/F0)

ln 10

so we can use the standard formula with x = F and a = k/ ln 10. We therefore get

σm = k

ln 10
· σF

F

To get σm equal to σF/F we therefore need k = ln 10 = 2.303. (Or of course –2.303).
With the standard k = −2.5 we get within 10% of this handy feature.

Exercises from Chap. 3: Counting the Ways: Arrangements and Subsets

3.1 Dinner party arrangements. In the text we saw that n distinguishable objects
have n! arrangements. However, if we arrange distinguishable objects in a cycle,
there is an extra subtlety. You can rotate the objects around the cycle and it looks the
same. In other words, abc is different from acb but the same as cba. One way to look
at this is that you take away the first choice. You could put the first person anywhere
round the circular table. After that, you have n − 1 choices for the neighbouring seat,
n − 2 for the next, and so on. The number of distinct ways is therefore N = (n − 1)!
which in this case is N = 4! = 24.

3.2 Anagrams of book. First let us imagine the two o’s to be distinct—labelling
them o1 and o2. The number of permutations is n! = 4!. Now if we remove the
subscripts, for each one of those permutations, the o1 and the o2 can be swapped—
ko1bo2 is the same as ko2bo1. So the number of distinguishable arrangements is 4!/2!
= 12. (Note that this includes the option “book”. One might argue that this shouldn’t
count, in which case there are 11 anagrams.) More generally for n items of which m
are identical, the answer is N = n!/m!. If the designer had been using “books’, then
n = 5 and m = 2, and so the number of distinguishable anagrams is 5!/2! = 60.

3.3 Departmental committee. Consider picking themen and thewomen separately.
The men can be picked

(11
3

)
ways = 11!/8!3! = 11.10.9/3.2 = 165. The women can
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be picked
(5
3

)
ways = 5!/2!3! = 5.4/2 = 10. For each male-pick we can match any

of the female-picks. So the total number is 165.10 = 1650.

3.4 Picking teams. This question is equivalent to partioning into three groups—two
groups of 5 and one group of 2. The answer depends on whether we care which is
Team A and which is Team B. Lets assume that we do. So we have three buckets
which we can label A, B, and L for the leftovers. The number of ways to partition n
things into k buckets is

N = n!
n1!n2!...nk ! =

(
n

n1, n2, ...nk

)

So in this case N = 12!/5!5!2! = 16, 632. Now suppose we don’t care which team
is which. Note that we will still be able to distinguish the left-over group. So we
can swap which team is A and which team is B and this reduces the number of
distinguishable partitions by 2! = 2, so N = 8, 316.

3.5 Approximating partitions. The exact answer is of course N = 16!/11! × 5!
The exact calculation gives N = 4368. If we use the better version of Stirling’s
approximation, n! ∼ √

2πn(n/e)n we get N = 4451.8, which is off by 1.9%. If
we use the more approximate version of Stirling’s approximation, which is the one
physicists most often use, we have ln n! ∼ n ln n − n or n! = exp (n ln n − n). This
gives N = 20, 690—way off! We should only use the second version when n is very
large.

3.6 Dungeons and Dragons. This is much the same as the the molecules-all-at-
one-end problem. On each roll, the probability of all n − 1 = 5 players getting the
maximum is p = (1/20)5. Of course this might occur anytime, but typically we
would expect it to take 205 rolls times 10 min, which gives almost 61 years. Some
games of Dungeons and Dragons certainly feel that long.

Exercises from Chap.4: Counting Statistics: Binomial and Poisson Distributions

4.1 Recovery from cancer. The probability follows the binomial distribution

fnp(x) =
(
n

x

)
px (1 − p)n−x with p = 0.8, n = 10 and x = 7 → f =∼ 0.20

For x = 3,
(10
3

)
is the same as

(10
7

)
and we get f = 0.00079. For x ≤ 7 we want

1 − ( f (8) + f (9) + f (10) which is

(
10

8

)
0.880.22 +

(
10

9

)
0.890.21 +

(
10

10

)
0.8100.20

which is 45 · 0.0067 + 10 · 0.027 + 1 · 0.107 = 0.68 and so P(≤ 7) = 0.32.
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4.2 Die coefficient of variation. The coefficient of variation α is the standard devi-
ation divided by the mean. For binomial μ = np and σ 2 = np(1 − p) so

α2 = np(1 − p)

(np)2
= 1 − p

np

which gives us

n = 1 − p

p
· 1

α2

In this case the probability of success per trial is p = 1/6 and we require α < 0.1.
Putting these numbers in, we require n > 500.

4.3 Passing driving test. This is an example of the geometric distribution, or bino-
mial waiting time distribution for the case of success on the x th trial. From Sect. 4.4
the probability is g(x) = p(1 − p)x−1 where p is the probability of success for each
trial and x is the number of the trial on which we get success. With p = 0.75 and
x = 4 we get g = 0.75(0.25)3 = 0.0117.

The geometric formula is actually fairly obvious from first principles. To get a
hit on the fourth go, we need to fail 1, and fail 2, and fail 3, and get a hit on 4,
and multiply each of those probabilities together. The implied assumption is that the
probability of passing on each attempt is independent. This is unlikely to be true. A
learner will have a better chance of passing the second time and so on (assuming that
they learn from experience!)

4.4 Lorry inspection. This is an example of binomial sampling but without replace-
ment, with the probability given by the hypergeometric distribution. Initially, the
probability of picking a defective lorry is 4/24, but the probability on the next pick
depends on whether the first pick found a duff lorry or not. In Sect. 4.4 we stated
(without proof) that the probability of r successes out of n picks is

P(r) =
(W
r

)(N−W
n−r

)
(N
n

)

n is the number of picks; n = 6 in this case
r is the number of successes (finding a defective lorry in this case)
N is the total pool of things to pick from (N = 24 lorries in this case)
W is the starting pool of possible successful things
(W = 4 defective lorries in this case).
So what we want is

P(0) =
(4
0

)(20
6

)
(24
6

) = 1 × 20!
14!6! × 18!6!

24! = 18.17.16.15

24.23.22.21
= 0.288

4.5 Fabric defects. The number of defects for a given length should followaPoisson
distribution. At any spot, the chance of there being a defect is very small, but are
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many possible such spots where a defect might occur. If the mean rate of defects is
0.2/m, then on a 30m length, the expected number of defects is 6. So the probability
of r defects is

p(r) = μr

r ! e
−μ

with μ = 6. To get the probability of four or more defects, we just do P(> 4) =
1 − [p(0) + p(1) + p(2) + p(3)]. This gives us

P(> 4) = 1 e−6 × [
1 + 6 + 62/2! + 63/3!] = 0.8488

Rejecting a long length with four or more defects is therefore probably overly strict.

4.6 Proving Poisson mean. The population mean is the expectation value of x ,
E(x) = ∑

x f (x) so for Poisson we have

E(x) =
∞∑
x=0

x · μx

x ! e
−μ

=
∞∑
x=0

μx

(x − 1)!e
−μ

= μe−μ

∞∑
x=0

μx−1

(x − 1)!

= μe−μ

∞∑
y=0

μy

y!

where in the last step we have changed from x to y = x − 1, and assume that y = −1
is undefined and can be ignored. However recall that

ex = 1 + x + x2

2! + x3

3
+ · · ·

which is the same as our series in y. So we have

E(x) = μe−μeμ = μ

4.7 Tree covering factor. The key to this question is working out the mean number
of trees in the line of sight, μ, and taking this to be Poisson distributed. Then for
the bird to be not hidden, in its direction there has to be zero trees in the line of
sight, which has probability P(0) = e−μ. The fraction of sight lines where the bird
is hidden is therefore 1 − P(0).

The second key insight is understanding that the trees can overlap in the line of
sight and that this is what gives us the mean number of trees in the line of sight.
Consider a section of the clump with horizontal width W . The depth of the clump
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is D. The area of ground concerned is therefore A = DW . If the surface density of
trees is σ , then the number of trees in our section is N = Aσ = DWσ .

Each tree haswidthd. The summedwidth of trees is therefore T = Nd = DWσd.
If we compare this to the actual width W , then the mean number of trees in the line
of sight is μ = T/W = DWσd/W = Dσd.

We are given D = 57m, σ = 0.033 m−2, and d = 0.7m, so μ = 1.32. Then the
covered fraction is

C = 1 − e−μ = 0.73

There is a 73% chance of the bird being hidden. One might ask whether the assump-
tion of the Poisson distribution is justified. The answer is reasonably so. If you any
individual tree in the whole clump, the probability of it being in our sight line is
small. However there is a large number of trees that could potentially be in our sight
line. The mean number in the line of sight is a middling number.

Exercises from Chap. 5: Combining Many Factors: The Gaussian Distribution

5.1 Equating Gaussians. This is simply a question of finding the value of x where
the two functions are equal. Both functions have σ = 1 so we just equate the expo-
nents, i.e. set (x − μA)

2 = (x − μB)2. We have μa = 0 and μB = 3 and so we want
the solution of x2 = (x − 3)2. This has three solutions: x = +∞, x = −∞, and
x = 3/2. So the answer is that pB exceeds pA when x > 3/2.

5.2 Width of Gaussian. It is simplest to work in terms of the standard form of the
Gaussian, f (z) = 1√

2π
e−z2/2. The maximum, at z = 0, is fmax = 1/

√
2π . In terms

of the height scaled to the maximum, r = f/ fmax we then have

r(z) = e−z2/2 and so z2 = −2 ln(r)

So for 50% of maximum, r = 1/2 and so z = √−2 ln(1/2) = 1.1774. The full
width is at ±z, so we get FWHM = 2.355. For 20% of maximum, W20 = 2 ×√−2 ln(1/5) = 3.588.

5.3 Gaussian gradient. Using the standard form f (z), the slope is d f/dz, and we
want to find z where d2 f/dz2 = 0.

f = 1√
2π

e−z2/2

d f

dz
= 1√

2π
· −ze−z2/2

d2 f

dz2
= 1√

2π

(
ze−z2/2.

−2z

2
+ 1.e−z2/2

)

= 1√
2π

.e−z2/2(1 − z2) = 0 =⇒ z = 1
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So z = 1, i.e. at 1σ , is where the slope is steepest. To find the intercept, note that at
z = 1, d f/dz = −(1/

√
2π).e−1/2, and the height of the curve is the same except for

the minus sign f = (1/
√
2π).e−1/2. If we write the equation of the tangent line as

f = az + b where a = d f/dz is the slope, then at z = 1 we have f = −a so that
the equation becomes −a = a + b which gives us b = −2a. Then if we ask where
is f = 0 we get 0 = az − 2a from which we find z = 2. In other words, the tangent
at the 1σ point intercepts the x-axis at the 2σ point.

This can be quite handy, as a rough approximation for the central part of the
Gaussian is a triangle which passes through the centre and the ±2σ points.

5.4 Approximating Binomial with Gaussian. The exact answer comes from the
binomial distribution for n = 16, p = 1/2, and x = 6. So we get

fn,p(x) =
(
16

6

)
·
(
1

2

)6 (
1 − 1

2

)16−6

= 8,008

65,536
∼ 0.122

where right at the end we have approximated the exact fraction to three decimal
places. The mean of the binomial is μ = np = 8 and the standard deviation is
σ = (np(1 − p))1/2 = 2. To look at the Gaussian approximation, we use the same
values of μ and σ in the Gaussian formula. If we are looking to approximate
x = 6 we can take any values greater than 5.5 and less than 6.5. From the nor-
mal distribution spreadsheet, or by any other tabulation, P(<5.5) = 0.10565 and
P(<6.5) = 0.22663 so P ≈ 6 = 0.121 to three decimal places. This differs from
the exact answer by only 0.001—so for n = 16 the binomial is already very close to
a Gaussian.

5.5 Integrated Binomial approximated with Gaussian. An exact answer sums
the binomial probabilities for 70, 71, 72 and so on. It is easier to use the Gaussian
approximation, and find the integrated probability above 69.5. The mean for the
binomial is μ = np and here we have p = 0.75 and n = 100 and so μ = 75. The
variance is σ 2 = np(1 − p) → σ = 4.33. The value x = 69.5 is therefore at z =
(x − μ)/σ = (69.5 − 75)/4.33 = −1.27. Gaussian tables or routines show P(z >

1.27) = 0.102 so here we want 1 − P = 0.898; there is roughly a 90% chance that
at least 70 mosquitos will be killed.

5.6 2D Gaussian profile. Integrating the radial profile of (5.4) we have

P(< R) =
∫ r=R

r=0

r

σ 2
exp

[−r2

2σ 2

]
dr

=
[
−e−r2/2σ 2

]r=R

r=0

= 1 − e−R2/2σ 2

and so

R

σ
= √−2 ln(1 − P)
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For P = 0.68 the 1D Gaussian will give this in the range ±1σ .
For the 2D Gaussian, we get P = 0.68 for R < 1.51σ .
For P = 0.90 the 1D Gaussian will give this in the range ±1.64σ .
For the 2D Gaussian, we get P = 0.90 for R < 2.15σ .
For P = 0.95 the 1D Gaussian will give this in the range ±1.96σ .
For the 2D Gaussian, we get P = 0.90 for R < 2.45σ .

5.7 Toothpaste stock. To solve this question, we use the Gaussian approxima-
tion to the Poisson distribution. For a mean of N = 150, the standard devia-
tion is σ = √

N = 12.25. From Gaussian tables, to get P(>z) = 0.05 we need
z = (x − μ)/σ = 1.64. Note that we want the one-tailed integral—we are not inter-
ested in cases where the chemist sells less than average. So we want the value
x = μ + zσ , where we use z = 1.64, μ = N = 150, and σ = √

N . This gives
x = 170.1. So the chemist should keep at least 170 tubes in stock each week.

5.8 Star counting accuracy. Again, this question is about using the Gaussian
approximation to the Poisson distribution. First we ask, what z range contains 95%
of the probability? In this case we want the two tailed integral, i.e. the integral within
±z—we don’t want our star-count to be either too low or too high. Gaussian tables
show us this requires |z| < 1.96 Next, if the count in our sample is N , the standard
deviation will be σ = √

N , but in this case we want 1.96σ . On each side of N we
want that 1.96σ range to be equivalent to 0.1N . So we want 1.96

√
N = 0.1N and

so
√
N = 19.6. So to get 10% accuracy with 95% confidence we want N > 384.

5.9 Gaussian M.A.D. Writing y = x − μ, the mean of the absolute deviation |y|
is given by its expectation value when subject to a Gaussian PDF:

E[ |y| ] =
∫ +∞

−∞
|y| p(y)dy with p(y) = 1

σ
√
2π

e−y2/2σ 2

However, p(y) is an even function, so

E[ |y| ] = 2
∫ +∞
0 y p(y)dy

= 2 1
σ
√
2π

∫ ∞
0 ye−y2/2σ 2

dy

= 1
σ
.

√
2
π

[
−σ 2e−y2/2σ 2

]∞
0

= σ

√
2
π

(0 − (−1))

= σ

√
2
π

∼ 0.8σ

5.10 Maxwell–Boltzmann peaks. (a)We take p(v) from the equation in Sect. 5.9.1
and differentiate. This gives the maximum at position v = √

kT/m. (b) The energy
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E is mv2/2, and so the most probable v corresponds to energy E = kT/2. (c) To
find the most probable energy E we need to convert to the probability density per
unit E , using f (E)dE = p(v)dv. We then find that f (E) ∝ E3/2 exp (−E/kT ).
Differentiating this, we find the maximum at E = 3kT/2. The most probable energy
does not correspond to the energy of the most probable velocity.

Exercises from Chap. 6: Distributions Arising from Processes: Random Walks,
Shot Noise, Lorentzians, and Power-Laws

6.1 Perfume spreading time. The molecules follow a three-dimensional random
walk. Using the peak of p(R) as given in Chap.6, after time t we have l = √

2vλ.t ,
and so the time taken for distance l is l2/2vλ. Here l = 1m, the molecular speed is
v = 490 ms−1, and he mean free path is λ = 1.3 × 10−7 m. This gives t = 7849s,
or 2.2 h.

6.2 Perfume spreading-2. Substituting σ 2 = na2 into (6.2) gives

p(R) = R2

σ 3

√
2

π
e−R2/2σ 2

which is the same as (5.5). If we now further substitute R = zσ we get

p(z) = z2σ 2

σ 3

√
2

π
e−z2σ 2/2σ 2 ∝ z2e−z2/2

as requested. Differentiating, we get

dp

dz
= 2ze−z2/2 − z3e−z2/2 = 0

One solution is at z = 0 but thats a minimum; the maximum is where 2z = z3 and
so z = √

2. The density per unit volume, as opposed to per unit radius, goes as
ρ(z) ∝ e−z2/2. Then the density per unit volume at z = 5 is down from z = 0 by
factor e−52/2 = 3.7 × 10−6. Even a very small volume of a substance contains huge
numbers of molecules, but the human nose can detect a handful of molecules, so it
is quite likely that it can detect a density of molecules a million times lower than the
peak density. We can therefore detect the spreading vapour a long time before the
radial density peak reaches us.

6.3 Mean of radial density. The radial density can be written

p(R) = Ae−R2/2σ 2
where A = 4πR2

(2πσ 2)3/2

which is then the same as A × I3 with h = 1/2σ 2 and σ 2 = na2. Substitution and
re-arrangement then gives the result, R = a

√
8n/π .
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Note: The odd-numbered error integrals In can be recursively solved by differen-
tiating inside the integral. So

I1 =
∫ ∞

0
xe−hx2dx = 1

2h

by straightfoward integration, and then

I3 =
∫ ∞

0
x3e−hx2dx = − ∂

∂h

∫ ∞

0
xe−hx2dx

= − ∂

∂h

(
1

2h

)
= 1

2h2

Likewise, it is easy to find that I5 = 1/h3.

6.4 Double Events. For events occuring at rate λ, the probability of an event in time
Δt is p1 = λΔt2. The probability of two events is p2 = p21. So we want p1/p2 =
1/p1 ≥ 100 which for λ = 10 gives Δt ≤ 1ms.

6.5 Thorium decay. The distribution of waiting times should follow f (t) = λe−λt

where λ is the rate of events. We can estimate this because the total number of events
is 766 in 2496s, so λ = 0.3069 s−1. We can then calculate the expected number of
events in each of the bins, watching out for the fact that they are not the same size, and
taking the position of each bin as halfway. This gives the following, with predicted
numbers rounded to nearest integer. The match is pretty good. To decide whether it’s
good enough requires the techniques of Chap. 7.

Time interval (s) Observed frequency Predicted frequency
0 - 1/2 101 109
1/2 - 1 98 93
1 - 2 159 149
2 - 3 114 110
3 - 4 74 80
4 - 5 48 59
5 - 7 75 76
7 - 10 59 54
10 - 15 32 28
15 - 20 4 6
20 - 30 2 2
Over 30 0 0
Total 766 766

6.6 Lorentzian versus Gaussian width. From Exercise5.2, for the Gaussian
W20/W50 = 3.588/2.355 = 1.52. For the Lorentzian, we use the standard form with
μ = 0 andΓ = 1which is the Cauchy distribution f (x) = 1/(π(1 + x2)). Themax-
imum, at x = 0, is fmax=1/π . At fmax/N we have f = 1/Nπ . Solving for x we have
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x2 = 1

π f
− 1 = 1

π
· Nπ − 1 = N − 1

So for N = 2 we get W50 = 2 × √
2 − 1 = 2, and for N = 5 we get W20 = 2 ×√

5 − 1 = 4. The ratio W20/W50 = 2, considerably bigger than for the Gaussian. If
we tried 10, 5% etc, the difference would get even larger.

6.7 Underestimating wings. First, assuming a Gaussian FWHM = 0.86GeV
implies σ = 0.365GeV. An event seen at +1.16GeV is therefore at a deviation
of z = +3.18σ . Looking up standard tables, P(> z = 0.00074) i.e. a chance of 1
in 1351. If the distribution is Lorentzian, there is no σ , but in terms of the FWHM
Γ we are at x − μ = aΓ with a = 1.16/0.86 = 1.349. To estimate the probability
P(>a) we can calculate the probability density at x − μ = a and then extrapolate
as x−2. In terms of Γ and a the Lorentzian pdf is

f (a) = 1

2πΓ
· 1

a2 + 1
4

With Γ = 0.86 and a = 1.349 we get f = 0.089. Approximating f = ka−2 then
putting in these values of f and a we get k = 0.16. The integrated probability is

P(>a) =
∫ ∞

a
ka−2 = [

ka−1
]∞
a = k

a

and so finally we get P(>a) ∼ 0.12. This is enormously different from the Gaussian
estimate, so the scientist could be making a big mistake claiming a discovery!

6.8 Wealth distribution. The integrated number of people above some value w is

N (w) =
∫ ∞

w
n(w)dw =

[
Ax1−α

α − 1

]∞

w

= Aw1−α

α − 1

The total number is Ntot = N (wmin), and above the dividing line W1/2, we have
N1/2 = Ntot/2 = N (w1/2). Making the subsitutions and re-arranging gives the result
w1/2 = wmin21/(α−1). On the other hand, the total wealth above w is

W (w) =
∫ ∞

w
wn(w)dw = Ax2−α

α − 2

which of course only converges if α > 2. Inserting w = wmin and w = w1/2 the
fraction of the wealth above w1/2 is found to be

F = 2−(α−2)/(α−1)

For α = 2.1 this gives F = 0.94. Note that the top-heaviness of the wealth distribu-
tion is very sensitive to the value of α near the critical value of 2.0.
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Exercises from Chap. 7: Hypothesis Testing

7.1 Yotta mass and one-tailed versus two-tailed tests. This is a good example of
why you need a clear alternative hypothesis, as well as a null hypothesis. In both
cases, the null hypothesis is that all four points are drawn from the same Gaussian
with μ = 1375 and σ = 65. However, the alternatives are quite different.

(a) If we restricting our attention to a single point, and furthermore, expecting it
to be high, then we can use the one-tailed Gaussian z-test. A point at 1512 compared
to mean 1375 and error 65 is at a deviation of z = 2.11. From Gaussian tables, we
can see that P(>z) = 0.017. So we would indeed reject the null hypothesis at 5%
significance.

(b) If we are prepared to be interested in any discrepant point, there are two
subtleties. The first is that although we spotted a high point, we would have been
equally impressed if we had seen a low point. The probability of seeing either a
high or a low point is twice as big, P = 0.034. The second subtlety is that we
would have been impressed by seeing any of the four points being discrepant. So
just like with the jelly bean question, we have to ask “whats the probability of seeing
at least one discrepant point out of four?”. With p = 0.034 and n = 4 we have
P(≥1) = 1 − (1 − p)4 = 0.129. So there is roughly a 13% chance of getting at least
one dodgy-looking point, which would not cause us to reject the null hypothesis.

7.2 Which urn was fetched? We can use F = Fred’s hypothesis (10 red 20 black),
and J = Jane’s hypothesis (15 red 15 black). We start with priors πF = πJ = 1/2.

The data is D = 3 reds out of 30. For Fred’s hypothesis the likelihood of D is
LF = (10/30)3 = 1/27; on the other hand L J = (15/30)3 = 1/8. (Note we know
that there 30 balls in total; also note that the balls are replaced.)

Themarginalised likelhood is E = LF · πF + L J · πJ = 35
27×16 . Then for the pos-

teriors we get

PF = πF · LF

E
= 1

2
· 1

27
· 27 × 16

35
= 8

35

PJ = πJ · L J

E
= 1

2
· 1
8

· 27 × 16

35
= 27

35

So Jane has becomesmore than three times as likely to be right. Note that the cred-
ibilities add up to 1.0. For the second experiment, we can use the posteriors after the
first experiment as our new priors: πF = 8/35, πJ = 27/35. The second experiment
gets two blacks, so we get likelihoods LF = (2/3)2 = 4/9 and L J = (1/2)2 = 1/4.
Working through the same calculation we end upwith PF = 0.345, PJ = 0.655. The
odds have improved in Fred’s favour, but Jane is still more likely to be right. You
can imagine that as we add more and more data, this oscillation would stop, and it
would gradually become more and more clear who was right.

7.3 Too many points above the line? The null hypothesis is that the fitted line
correctly describes the data points. In the absence of more complete knowledge, we
should consider that each point has an equal chance of being above or below the line.
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So its like tossing a coin six times. Being above the line is “success” with p = 1/2.
With n = 6 trials, the binomial distribution gives us

f (5) = 6

26
and f (6) = 1

26

so the probability of getting at least five points above the line is 7/26 = 0.109, which
we would not reject at 95% confidence, or even at 90% confidence. If the student
is being even more careful, they might have asked whether they would have been
equally impressed with five points out of six below the line; then the chance is twice
as large.

7.4 Is the mosquito spray faulty? The calculation is intrinsically a binomial
one, but the normal approximation is easier to calculate. We have n = 100, p =
0.75, so in the exact binomial version μ = np = 75 and the standard deviation
is σ = (np(1 − p))1/2 = √

100 · 0.75 · 0.25 = 4.33. So the deviation is z = (65 −
75)/4.33 = −2.31. From our usual spreadsheet or tables, doing a one-tailed test, we
find that P(z < −2.31 = 0.0104). Probably here a two-tailed test is appropriate. We
would therefore reject the null hypothesis at 95% confidence but not at 99% confi-
dence. If we had x = 60 on the other hand, we have z = (60 − 75)/4.33 = −3.46,
which has P(z < −3.46 = 0.0003), which is a highly significant deviation. This
shows how sensitive the normal deviation test is around the 2–3σ range.

Now suppose instead of 65/100, we had found the same fraction in a larger sam-
ple, 650/1000. Now the mean is μ = 750 and standard deviation is σ = (np(1 −
p))1/2 = √

1000 · 0.75 · 0.25 = 13.69. Our result of 650 then represents a devia-
tion z = (650 − 750)/13.69 = −7.30, which is an extremely unlikely deviation. So
sample size matters a lot.

7.5 How long do we need to run the Thorium experiment? We can take the stan-
dard theory as the null hypothesis. It predicts rate λ0 so after time t will accumulate
N0 = λ0t counts. The Poisson error on this is σ = N 1/2

0 , and we will assume that
we get enough counts that we can treat this as a Gaussian error. (We will justify this
when we see the answer). If the alternative hypothesis is rate λ1 predicting counts
N1 = λ1t , then what we are really asking is “assuming mean N0 and σ = N 1/2

0 ,
what is the probability of getting at least N1?”. For that probability to be 5%we need
1.65σ . So we require

N1 − N0 = 1.65N 1/2
0 or λ1t − λ0t = 1.65(λ0t)

1/2

from which we find

t = 2.72λ0

(λ1 − λ0)2

With λ0 = 0.35 and λ1 = 0.37 this gives t = 2380 s. (This gives N0 = 833 counts,
so the Gaussian approximation is fine.)
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7.6 What does a small χ2 mean? The most common way this can happen is if the
experimentalists have overestimated their error bars for some reason. Remembering
that χ2 = ∑

(xi − μ)2/σ 2
i you can see how this happens.

7.7 Likelihood versus χ2 For a single data point x the likelihood is

Li (μ, σ ) = 1

σ
√
2π

exp

[
−1

2

(
xi − μ

σ

)2
]

The joint likelihood of the N points is given by multiplying the probabilities:

L(μ) =
(

1√
2π

)N ∏
i

(
1

σi

)
· e

− 1
2

∑ (
xi−μ

σi

)2

Looking at the three terms, the first two terms do not involve μ and so can be
treated as constant. For the third term, the expression is almost the same as χ2:

χ2 =
∑
i

(xi − μ)2/σ 2
i

and so you can see that as required ln L(μ) = const − χ2/2. Quite often in the
literature you find the “likelihood function” defined as the joint likelihood without
all the constant terms, so that you may see simply ln L = −χ2/2.

7.8 Testing ball-drop time. The sample mean is x̄ = ∑
xi/N . We don’t have the

individual xi values, but we can take the number of objects in each bin n j and use
the centre of each bin Tj = 0.595 etc, and then we get

Tobs = T̄ = 1

N

10∑
j=1

Tjn j = (1/50) × 2 × 0.595 + 2 × 0.605... = 0.6334

The sample standard deviation is given by

σobs = s = 1

N 1/2

[∑
n j (Tj − T̄ )2

]1/2 = 0.0197

From simple physics, the time to fall height h from rest with acceleration g
is T f = (2h/g)1/2 = 0.6386 s. Now we test the Gaussian curve against the data
histogram. Given μ = T f and σ = σobs the probability density of a given T value
is given by f (T ) where f is the usual Gaussian function. As T , T f and σ are all
in units of seconds, the probability density is per second. The width of each bin is
0.01 s, and the total number of objects is 50, so the predicted number in a given
bin is n j = 50 × 0.01 × f (T ). We can take the square root of this as a Poisson
error on that bin, and will assume it is a Gaussian error. (This may be the weakest
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assumption). Finally, we can treat the value in each bin as a data point, and so get χ2

by accumulating values of the squares of the deviations of each bin from its predicted,
divided by its individual variance. This is built up as in the table below.

Tj n j npred σ j (n p − n j )
2/σ 2

j

0.595 2 0.88 0.94 1.43
0.605 2 2.37 1.54 0.06
0.615 11 4.94 2.22 7.42
0.625 6 7.97 2.82 0.49
0.635 12 9.94 3.15 0.43
0.645 8 9.59 3.10 0.26
0.655 4 7.16 2.68 1.39
0.665 3 4.13 2.03 0.31
0.675 1 1.84 1.36 0.39
0.685 1 0.64 0.80 0.21
χ2 12.56

Because we have estimated σ from the data, the degrees of freedom is ν = N −
1 = 9. Looking up these values on the spreadsheet P(χ2 > 12.56) = 0.184 so in
fact the expected Gaussian is a perfectly good fit. Note however that we have use the√

(N ) approximation for some rather small numbers, so this result may not be very
accurate.

Exercises from Chap. 8: Parameter Estimation

8.1 Mean brightness of star. The straight sample mean is x̄ = ∑
xi/N = 243.

The weighted mean is
∑

(xi/σ 2
i )/

∑
(1/σ 2

i ) which gives 224.03. The error on the
mean is 1/

∑
(1/σ 2

i ) = 4.94.
To get 95% confidence, with a two-tailed test, we want the value of z which gives

P(>z) = 0.025, which is z = 1.96. The 95% limits are then 224.03 ± 1.96 × 4.94
which gives 214.35–233.71. This range does not include the simple unweighted
mean. The unweighted mean is poor because one of the points has a very large error;
the weighted mean plays down that point.

The high point is many multiples of σμ from the weighted mean. However, in
terms of its own error, it is only 1.7σ from the mean. It is probably not that this point
is “dodgy”—it just happens to have a large error. So sigma-clipping is not justified.
If we did remove the high point, the straight mean would be 221, quite consistent
with the weighted mean. However this is not surprising, because the weighted mean
is dominated by the other two points.

8.2 Biased versus unbiased standard deviation. The ratio of the two s.d. estimates
is

r = σun

s
=

√
N

N − 1

Solving for N we have N = r2−1
r2 . So for r = 1.05 we get N = 10.75 and therefore

we need at least 11 data points.
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8.3 Confidence regions for Yotta mass. The sample mean is m̄ = ∑
mi/N =

86.34. The sample variance is s2 = ∑
(mi − x̄)2/N = 5.41 and the error on the

mean is σμ = s/
√
N = 2.42.

For a z-test, we would compare the predicted mean ms with the observed mean,
and need to assume a value for σ . If as the question suggests, we just use the sample
variance,we then have z = (m̄ − ms)/σμ = (86.34 − 91.93)/2.42 = −2.31.A two-
tailed test is appropriate here. Looking up P(< −z,> z) in a Gaussian table we get
P = 2.1%, a very significant result.

However, because we have estimated both mean and variance from the same data,
we should use the t test. The value of t is the same as the z we just calculated,
i.e. t = 2.31, but now we need to look up in a t-table, with degrees of freedom is
ν = N − 1 = 4. Looking up P(< −t,> t)we get P = 8.0%, a very different result.
So for small samples, using t as opposed to z really matters.

To get 95% confidence, we want P(>t) = 0.025 for a two tailed test. Playing
with t tables with ν = 4 we find we need t = 2.78; so with σμ = 2.42 we want
m̄ ± 2.78 × 2.42 i.e. 79.61–93.07.

8.4 t versus Cauchy. Putting ν = 1 into the equation from Sect. 8.3.4. we have

f1(t) = Γ (1)

π1/2Γ (1/2)

[
1 + t2

]−1

However, Γ (1) = 0! = 1 and (not so obvious, but true) Γ (1/2) = π1/2. So we get

f1(t) = 1

π(1 + t2)

which is the Cauchy distribution, as required.

8.5 Maximum likelihood estimate of decay rate. The exponential distribution is
fλ(t) = λe−λt . The joint likelihood of N points ti is therefore

L =
N∏
i=1

λe−λti = λNe− ∑
λti

and so log L = N log λ − λ
∑

ti . To get the maximum,

∂log L

∂λ
= 0 = N

λ
−

∑
ti

and so finally we get the maximum likelihood estimate of λ as

λML = N∑
ti
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8.6 Weighted versus unweighted mean. If all σi = σ , the numerator in the
weighted mean formula gives

∑
xi/σ 2

i = 1
σ 2

∑
xi , and the denominator gives∑

1/σ 2
i = N/σ 2. We then get μ̂ = ∑

xi/N which is the standard x̄ formula.

8.7 Estimating coin bias. (a) The natural estimate for p is just r/n = 0.75.
If the value of r is drawn at random from a binomial distribution which does
indeed have probability p per success, then the dispersion is σr = √

np(1 − p) =√
4 × 0.75 × 0.25 = 0.866. Because p = r/n, following the standard propagation

of error formulae, we get σp = σr/n = 0.217.
(b) The Likelihood for seeing r = 3 given n = 4 and hypothesised probability p

is just given by the binomial distribution. Because we are assuming a uniform prior,
the posterior is proportional to the Likelihood, so

P(p) = const × n!
r !(n − r)! p

r (1 − p)n−r = const × 4 × p3(1 − p)

Themaximumposterior/likelihood is thenwhere dp/dp = 0which gives 3p2 = 4p3

and so p = 3/4, exactly in agreement with the natural estimate of part (a).
The maximum posterior is where p = 3/4. Ignoring the constants we get Pmax =

p3 − p4 = 0.753.0.25 = 0.1054. The half-max points are then at the solution of
Pmax/2 = p3 − p4 = 0.0527. Trial and error on a calculator pretty soon gives
p = 0.460 and p = 0.936 giving FWHM= 0.476. If we assume a Gaussian approx-
imation, we would have FWHM = 2.355σ so we get σ = 0.202. This is close to
the part (a) estimate, but definitely different. This seems reasonable, because with
n = 4 the approximation of the binomial to Gaussian won’t be that good. Indeed,
you can see that the two values of p we found for Pmax/2 are not symmetrical about
the maximum at p = 0.75.

(c) Because we are just looking for the maximum, we can once again ignore the
constants, and have

P(p) ∝ π(p).L(p) ∝ (p − p2)(p3 − p4) = p6 − 2p5 + p4

The maximum is where dp/dp = 0 and so 6p5 − 10p4 + 4p3 = 0
but assuming p3 �= 0 we have 6p2 − 10p + 4 = 0
which factorises to 2(3p − 2)(p − 1) = 0
and so p = 2/3 or p = 1. The latter is in fact aminimumof the function. The solution
for maximum posterior is p = 2/3. This is clearly different from the uniform prior
estimate, but well within the 1σ error for that estimate.

(d) For a uniform prior, the maximum posterior estimate will once again be the
same as the natural estimate, so p = 65/100. The likelihood L(r |p) is binomial with
μ = np = 0.65 and dispersion σr = √

np(1 − p) = √
100 × 0.65 × 0.35 = 4.770.

We then have σp = σr/n = 0.0477. For n = 100 the distribution will be a very good
approximation to a Gaussian, and for a uniform prior this will also be the shape of the
posterior distribution. Assuming then a Gaussian distribution, 95% overall credibiliy
will fall within z = ±1.96σ , which gives the range 0.557 < p < 0.743. Note that
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this does not include p = 0.5—getting 65 heads out of a 100 is pretty strong evidence
of bias.

8.8 Three point Gaussian solution. Following the notes, we use the formulae

Q0 = Q3 − ΔQ

[
y3 − y2

y1 − 2y2 + y3
+ 1

2

]
σQ = ΔQ

√
(2y2 − y1 − y3)−1

with Q1 = 16.0, Q2 = 17.0, Q3 = 18.0 and y = log P with P1 = 0.0372, P2 =
0.0489, P3 = 0.0416 and ΔQ = 1.0. Plugging these numbers in we get Q0 =
17.128, σQ = 1.516.
Another method to calculate the s.d. is using the curvature formula.

σ 2
Q = −

(
d2P

dQ2

)−1

Calculating the differences,

Δ12 = y2 − y1 = 0.2735 Δ12 = y3 − y2 = −0.1616 Δ(Δ) = −0.4351

which gives σQ = 1.5159, exactly as before.

8.9 Relation between posterior and χ2. Prior, posterior and likelihood are linked
by Bayes’s formula:

P(μ) = π(μ) · L(D|μ)

E

where E is the marginalised likelihood. Each data point is drawn from the same
Gaussian, so the joint likelihood of the dataset is

L(μ) =
(

1

σ
√
2π

)N

exp

[
−

∑ 1

2

(
xi − μ

σ

)2
]

Taking (natural) logs we get

log L = −N log (σ
√
2π) − 1

2

∑ (
xi − μ

σ

)2

= const − 1

2
χ2(μ)

Taking logs of theBayes formula,wehave log P(μ) = logπ(μ) + log L(μ) − log E
and we note that E is a constant, i.e. not a function of μ. Combining these results,
we get

log P(μ) = const + logπ(μ) − 1

2
χ2(μ)



Solutions 333

as required. For theminimumofχ2 to be in roughly the sameplace as themaximumof
P , we need π(μ) to change more slowly than χ2(μ), i.e. so to a good approximation
it can be seen as a uniform prior.

8.10 Gaussian approximation to χ2. The χ2 distribution has mean ν and variance
2ν, where ν = N − m is the number of degrees of freedom. Those formulae formean
and variance are always correct, but for large enough ν we can treat the variance as
corresponding to a Gaussian variance. For a Gaussian, 95% confidence is at 1.65σ—
note that a one-tailed test is appropriate. The corresponding approximate value of χ2

is therefore

χ2 = ν + 1.65 × √
2 × ν1/2 = (N − m) + 2.33(N − m)1/2

To see how accurate this is, we can use a χ2 table to compare to the correct value
which gives P(> χ2) = 0.05.

N = 3, ν = 2 True χ2 = 5.99; Gaussian approximation χ2 = 5.30, which gives
real P = 7.1%

N = 10, ν = 9 True χ2 = 16.92; Gaussian approximation χ2 = 16.00, which
gives real P = 6.7%

N = 50, ν = 49 True χ2 = 66.34; Gaussian approximation χ2 = 65.33, which
gives real P = 6.0%.

Exercises from Chap. 9: Inference with Two Variables: Correlation Testing and
Line Fitting

9.1 Perfect correlation. For perfect correlation yi = a + bxi for all values of i .
Then

ȳ =
∑

yi
N

=
∑

a + bxi
N

= a +
∑

bxi
N

= a + bx̄

which means that yi − ȳ = a + bxi − a − bx̄ = b(xi − x̄)
Taking the definition of r from Sect. 9.4.1, the numerator then gives

∑
(xi − x̄)(yi − ȳ) = b

∑
(xi − x̄)2

and the denominator gives

√∑
(xi − x̄)2.b2

∑
(xi − x̄)2 = b

∑
(xi − x̄)2

This is the same as the numerator, so r = 1.

9.2 Maths/Physics/Art correlations. Using the formula from Sect. 9, we want to
calculate the deviation from the mean for each data point for each of Maths (M),
Physics (P) and Art (A). First we get the means: M̄ = 39.1, P̄ = 30.0, Ā = 35.5.
Then writing dM for Mi − M̄ , to test Maths versus Physics we accumulate sums as



334 Solutions

follows:

Sum of dM × dp = 327.0
Sum of dM2 = 496.9
Sum of dp2 = 466.0
Putting these into the formulawe get r = 0.68 and t = 2.78. For 9 degrees of freedom
this gives P < 1.1% (one tailed test). So there is pretty good evidence of correlation.

For Maths versus Art we get
Sum of dM × dA = −99.55
Sum of dM2 = 496.9
Sum of dA2 = 582.7
This gives r = −0.19 and t = −0.6, which gives P < 28% (one tailed test). So there
is no sign of any correlation.

9.3 Regressing two different ways. Given that we don’t have errors on the indi-
vidual marks, we just use the least-squares formulae, equations (9.8) and (9.9). If we
take x as the Maths mark and y as the Physics mark, and accumulate the necessary
sums, we get b = 0.658 and a = 4.276. However if we take x as the Physics mark
and y as the Maths mark, we get b = 0.702 and a = 18.039. These two lines are
plotted on the figure along with the data. Note that above we have re-defined x as the
independent variable and y as the dependent variable in each case. So the solutions
we have are

P = a + bM where a = 4.276 b = 0.658

M = c + dp where c = 18.039 d = 0.702

If we want to compare the P versus M slope in the two cases then we have
(Fig.A.3)

Fig. A.3 Plot of Maths mark
versus Physics mark, and the
two regression lines
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P = a′ + b′M where a′ = − c

d
= −26.08 and b′ = 1

d
= 1.425

The slopes are therefore very definitely not the same. But is the difference signif-
icant?

9.4 Error on regression slopes. With all σi = σ (9.11) becomes σ 2
b = N/(Δσ 2).

We also have Δ = S2S5 − S23 , and following the definitions and likewise putting in
σi = σ we end up with

σb = σ.

√
N

N
∑

x2i − (
∑

xi )2

Here x = maths score, N = 11,
∑

xi = 439.0, and
∑

x2i = 17306. This gives
σb = 0.224. The error on the other slope is similar. The difference between the
Physics-on-Maths and Maths-on-Physics slopes is therefore significant at a few
sigma.

9.5 Regression slopes and correlation coefficient. We could fit either y = a + bx
or x = e + f y and get solutions

b =
∑

dxdy∑
dx2

f =
∑

dxdy∑
dy2

where dx is shorthand for xi − x̄ etc. If we invert this latter solution to y = a′ + b′x
we have b′ = 1/ f . Now we can see that

b

b′ = b f =
(∑

dxdy
)2

∑
dx2

∑
dy2

However, the correlation coefficient is

r =
∑

dxdy√∑
dx2

∑
dy2

so we see that r = √
b/b′. This makes good qualitative sense. If we have a perfect

correlation, with a thin strip of points, the two lines will be the same, so b = b′ and
r = 1. On the other hand completely uncorrelated points would be a circular blob of
points, and the two lines would be at right angles, so that r = 0.

9.6 Correlation versus catchment. The two correlations have r1 = 0.67 and r2 =
0.43. We transform to Fisher’s z = 1

2 ln [(1 + r)/(1 − r)], giving z1 = 0.8107, z2 =
0.4497 and so a difference Δz = 0.361. If the correlations are the same, Δz should
be consistent with zero. What is the variance of our Δz estimate? We have σ 2

z = 1/

(N − 3)with N = 75 and N = 63 respectively. and so σΔz =
√

σ 2
z1 + σ 2

z2 = 0.1749.
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So our Δz = 0.361 is 2.064 standard deviations away from the mean, which is just
significant at 95% confidence.

9.7 Spearman rank correlation test. First, we need to convert the scores into ranks.
Below, tied ranks have been allocated at random. Some textbooks suggest giving all
tied ranks the same, possibly with half-rank values so that the sum stays the same.
Either procedure is ok. We then collect values of Xi − Yi in another column.

Student Maths mark Xi =maths rank Art mark Yi =art rank Xi − Yi
A 41 5 38 4 1
B 37 7 44 2 5
C 38 6 35 6 0
D 29 10 49 1 9
E 49 1 35 7 –6
F 47 3 29 10 –7
G 42 4 42 3 1
H 34 9 36 5 4
I 36 8 32 8 0
J 48 2 29 9 –7
K 29 11 22 11 0

Using (9.5) we get rs = −0.54, i.e. there is if anything an anti-correlation. Then
transforming with (9.6) we get ts = −1.92 for ν = N − 2 = 9. Looking up in t-
tables, we should use a two-tailed test—we didn’t know whether to expect a correla-
tion or anti-correlation and could be interested in either. This gives P(> t) = 0.087,
a very interesting but not definitive result.

Exercises from Chap. 10: Model Fitting

10.1 Errors from covariance matrix. The off-diagonal elements are zero, so the
parameters are not correlated. The top-left element of the matrix is σ 2

p ; so the con-
ditional error is σp = 3.11. To get 90% we need to go 1.64σ ; so p = 19.7 ± 5.1 =
14.6 − 24.8.

For the joint error, with two parameters, we need to go to kσ where k = 1.52. For
90%we need k × 1.64 × σp, so p = 19.7 ± 7.8 = 11.9 − 27.5. Note σq is irrelevant
because the parameters are not correlated.

10.2 Estimating joint error. The parameters are clearly correlated, so we need the
bounding box for the contour. This is sketched in Fig.A.4. The annotation gives an
estimate for best fit a = 464, range ±192, but we are in 2D so we need k = 1.52, so
we have ±292. Finally we have a = 464 ± 292 = 172 − 756.

10.3 Error on four parameter fit. It is easiest to answer this the other way round.
Form = 4 parameters,Δχ2 will be distributed as χ2

4 , i.e. χ
2 with ν = 4. Looking up

in a χ2 table, we findΔχ2 = 4.72. The multiple of σ is given by k = √
Δχ2 = 2.17.
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Fig. A.4 One sigma contour
with bounding box sketched
on the figure

10.4 χ2 for maths-physics correlation. If M is the maths mark, then we predict
the physics mark as Ppred = a + bM with a = 4.276 and b = 0.658. Then for each
student we do the deviation P − Ppred, and do the sum of squares divided by σ 2.
Using the table of numbers in Chap.9, for σ = 5 this gives χ2 = 10.03. For N = 11
and two parameters fitted, this is ν = 9 which gives P(> χ2) = 0.35 which is a
perfectly acceptable fit.

However for σ = 3.5 χ2 = 20.47 which gives P(> χ2) = 0.015 which would
be rejected at better than 95% confidence, and almost at 99% confidence.

The general lesson is that one must get the errors right—as well as testing whether
we have the right shape, the χ2 test is very sensitive to the assumed error size.

10.5 Extra parameter test. Model-1 with χ2 = 11.6 and ν = 9 − 2 = 7 degrees
of freedom, gives P(>χ2) = 0.12. This looks rather poor, but you wouldn’t reject
it. Model-2, with χ2 = 6.2 and ν = 9 − 3 = 6 degrees of freedom, gives P(>χ2) =
0.40, a good fit. We can test the significance of the improvement can be assessed
with the Δχ2 test.

We have Δχ2 = 11.6 − 6.2 = 5.4. This should be distributed like χ2 with 7 −
6 = 1 degrees of freedom. We then find P(>Δχ2) = 0.02, a very significant result,
arguing that the second model is indeed better.

10.6 Model comparison with F-test. With χ2
1 = 11.6, ν1 = 7, χ2

2 = 6.2, ν2 = 6,
we get F = 1.604. Looking up in a standard F-table, P(>F = 1.60) = 0.29. So it
seems the second model is better, but the difference is not very significant.

There is no reason the two methods should give the same answer—they are math-
ematically different tests, asking different questions. In this case the Δχ2 test is
much more sensitive. It can be tempting to try different tests until you get a signifi-
cant result. but then you are falling into the multiple tests trap. Your result is not as
significant as you think.
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10.7 Many-parameter fit. This follows the method described in Sect. 10.5.6. For
15 parameters, Δχ2 will be distributed like χ2 with ν = 15. Looking up a χ2 tables,
to get P(>χ2) = 0.05 needs χ2 = 25.0. If k = r/σ then k = √

Δχ2 = 5.0. So we
have to go to 5σ to get 95% confidence.

Exercises from Chap. 11: Information, Uncertainty, and Surprise

11.1 Units of uncertainty. Uncertainty in Shannons or bits is h = − log2(p). Here
p = 1/6 so h = 2.85. In bans, h = − log10(p) = 0.301.

11.2 Playing card uncertainty. (a) h(spade) = − log2(1/4) = 2.00; (b) h(Ace) =
− log2(1/13) = 3.70 (c) h(Ace of spades) = − log2(1/52) = 5.70. We can see that
h(Ace of spades) = h(spade) + h(Ace) = 2.00 + 3.70 = 5.70.

11.3 Biased coin. For the two-box distribution, H = p log2 (p) + (1 − p)
log2 (1 − p); so with p = 0.6 we get H = 0.97, c.f. 1.0 for a balanced coin. Solving
for the p needed for a given H can be done by numerical experiment, which quite
easily shows that we need p = 0.89 to give H = 0.5.

11.4 Maximum H for binomial and Gaussian. The maximum Shannon entropy
for the binomial distribution is given by Hmax = 1

2 log2
(
nπe
2

)
. We can re-express

in terms of variance σ 2 = np(1 − p), but note that the maximum occurs when for
p = 1/2, so we use σ 2 = n/4. This gives us

Hmax = 1

2
log

(
4σ 2πe

2

)
= log(2πσ 2e)

which is exactly the same as the Gaussian result in the text.

11.5 Information in quantum numbers for new particle. First, we add the nine
numbers in each grid (76, 59, 110 for A,B,C respectively), then we divide each
cell by that total to give probabilities. Next we add Pi j log2 Pi j for each of the 9
cells to give the joint uncertainty: HA = 3.0243, HB = 2.7784, HC = 3.0284 bits.
Then we add each column to give the marginal distribution in X = Q1 and each
row to give the marginal distribution in Y = Q2. Next, in each case we add the
three values of Pi log2 Pi to give themarginal uncertainties HA(X) = 1.50, HA(Y ) =
1.5243, HB(X) = 1.5372, HB(Y ) = 1.5372, HC (X) = 1.5848, HC (Y ) = 1.5848.
Summing HX + HY in each case and comparing to the total H , we find that the
mutual information is IA = 0.0, IB = 0.296, and IC = 0.1412. These calculations
then show that model A produces a distribution with independent variables, whereas
in models B and C the variables are dependent.

We can assign −1, 0 and +1 as numerical values, and then get the means. All the
distributions givemean zero.We can then use this to calculate the covariance, and get
σ 2
XY (A) = 0.0, σ 2

XY (B) = 0.2712, σ 2
XY (C) = 0.0. So distribution A is independent

and uncorrelated; distribution B is dependent and correlated; and distribution C is
dependent but not correlated.
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11.6 Message coding efficiency. The information per symbol is Hsym = log2 6 =
2.58 bits. The channel capacity is 4 bits, so the efficiency is 2.58/4.0 = 62.5%. If we
take two symbols at a time, there are 36 possibilities so Hsym = 5.17. So this can’t
be done with 4 bits. If we use 8 bit words, the efficiency is 64.6%, no better than
before. If however, we take 3 symbols at a time, there 216 options, so Hsym = 7.75,
and using 8 bits words is pretty good.

Exercises from Chap. 12: Erratic Time Series

12.1 Undershoot of variance within single path. The “undershoot” effect is real,
because neighbouring points are correlated, so the variance is smaller. The sequence
is made with α = 0.95. Based on (12.8), τ = 1/(1 − α) = 20, so one would need a
lag at least several times this.

12.2 ACF of quasar light curve. Our estimate of the ACF at lag = 1 is just
the correlation coefficient between successive points. The values given lead to
r = −0.632. With N = 13 and this corresponds to t = −2.06 for ν = 11, which
has P(> t) = 3.2%. So at 5% significance, there is a measurable autocorrelation. If
you just plot the light curve, you’d be hard put to see this, but if you plot successive
points against each other, the anti-correlation is fairly clear.

12.3 Stationarity of MA. This is MA with c = 0, β0 = 1 and β1 = β2 = · · · = 1.
The variance is σ 2

z × ∑
β2
i so with all the terms equal to 1, this is infinite and the

series is not stationary—it just keeps growing. But if you do yt = xt − xt−1 you get
yt = Zt + (α − 1)Xt−1 and all the other terms cancel. So this is a q = 1 series with
β1 = α − 1. From the notes ρ(1) = β/1 + β2 so we get ρ(1) = α − 1/2 + α2 − 2α
as required.

12.4 Exponential approximation for ACF of AR process. The correct version
is ρ(k) = αk and the approximation is ρ = e−k/kch with kch = 1/(1 − α). Putting in
α = 0.8 for k = 1, 3, 6 the difference is 2, 7, 15%. To get the approximation we used
log(1 + x) = x − x2/2 + · · · with x = α − 1, and used only the first term. The ratio
of the second term to the first term is −x/2, so we want x as small as possible. This
needs α close to 1.0. Small α gives a poor approximation, but so does α > 1.

12.5 Growth of variance for AR(1) versus α. We use

σ 2
Δx (k) = 2

σ 2
z

1 − α2
· (
1 − e−k/τ

)
with τ = 1/(1 − α)

Then we get
α = 0.1 : σ1/σkch = 0.97
α = 0.3 : σ1/σkch = 0.89
α = 0.6 : σ1/σkch = 0.72
α = 0.9 : σ1/σkch = 0.39
α = 0.99 : σ1/σkch = 0.13
You can see that as expected, low values of α are quite close to pure noise—the
variance hardly decreases—whereas for α ∼ 1 the small-lag variance is a lot less.
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12.6 OU versus AR. On a finite timescale Δt the OU difference equation becomes
Δx = −γ xΔt + Z where Z is a Gaussian process with σZ determined by the OU
parameter σ . The AR1 process is defined so that xt = αxt−1 + Zt which can be
re-arranged as Δx = xt−1(α − 1) + Zt . This is equivalent to the OU equation with
Δt = 1 and γ = 1 − α.

12.7 Weather as a Markov process. If we have S1 = clear and S2 = rainy, then
we have A12 = 0.2 and A21 = 0.75. Then the expected steady state probabilities are
P1 = 0.79 and P2 = 0.21. The latter is inconsistent with the observed P2 = 0.15. It
could be that the input transition values are a bit off. For example A12 = 0.15 and
A21 = 0.85 would get agreement. But it could also be that daily weather really isn’t
a simple Markov process—it does have some memory. However, modelling it as a
Markov chain is not too bad.

Exercises from Chap. 13: Probability in Quantum Physics

13.1 Carbon decay rate. We need to look up the mass of a Carbon atom, which is
39.083 a.m.u. Then a 70kg body will contain 8.07 × 1014 atoms of 14C. With a half
life of 5370 years, this gives 3302 events per second, broadly comparable to the rate
from 40K. While an organism is alive, and either absorbing carbon from the air or
eating plants, it will have a constant rate of events per kg. Once it dies, the amount
of 14C will slowly decline, and so the event rate decreases, at a predictable rate.

13.2 Event waiting times. For radioactive events (or any truly random events)
the waiting time to the next event does not depend on how long the previous wait
was. For sporadic events in general, such as bus waiting times, there may be such a
dependency, because they may not be truly random.

13.3 Stern–Gerlach state mixtures. From Sect. 13.5.3, Pup = 1
2 (1 + cos θ) and

Pdown = 1
2 (1 + cos θ). So if Pup = 2Pdown we get θ = 70.53◦.

13.4 Entanglement distance. The fastest a causal influence could travel is the speed
of light c. So if the measurement takes time t , to avoid causal influence, we need
the distance between measurements to be d > ct . For t = 1ms this is 300km. At
the time of writing, the longest entanglement experiment covered 143km, but longer
ones are planned. Of course, you can also try to make the measurement time faster.

13.5 Testing survey results. Note that because the tables supposedly derive from
a single survey in which everybody was asked the same questions, the consistency
tests of section 13.7.1 should be obeyed exactly, rather than with in statistical errors.
Test-1 is passed, as the sum of cells in each table adds to the same number, 795.
Test-2 is also passed—the two different ways of summing the A-values both give
478; likewise the test for B and C give 380 and 434 respectively. However the data
fails Test-3 (the original Bell test). The number answering yes on A and no on B
is 133, and the number answering yes on B and no on C is 96. These values sum
to 229, which according to Test-3 must be greater than the number that said yes to
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A and no to C . However, the latter is 235. These tables therefore cannot have been
drawn from a single 2 × 2 × 2 dataset.

Of course the polling companymight havemade a simple error, but passing Test-2
does tend to suggest that they very carefully fiddled the numbers to look reasonable—
but not carefully enough to fool well-educated statisticians!

13.6 Entanglement-coded messages. In symmetric key systems the sender A and
receiver B use the same key to encrypt/decrypt a message. The “key” is normally a
random number fed into an encryption algorithm, which determines its behaviour. A
point ofweakness iswhen A and B exchange the key to be used; if spyC intercepts the
key, theywill be able to eavesdrop, and A and B may never know this is happening. In
asymmetric key systems, the eavesdropping problem is solved by using an algorithm
that has separate encryption and decryption keys. The encryption key is public, but
A keeps the decryption key completely private. However, this method is prone to
“reverse engineering” unless the keys are extremely long.

In quantum key distribution A creates entangled pairs, sending one stream to
themselves and the other to the distant B. The random sequence of up and down states
constitutes the binary random number key; B simply has to invert their sequence to
know what A has. But suppose C operates some kind of experiment in the middle,
detecting the state of particles that pass by, in some non-destructive way?

The idea is that A and B reserve part of the sequence to test, setting up the same
kind of experiment as used in Bell’s inequality-style tests, with magnets rotated to
three different angles. They choose the angles at random but after the test exchange
information on the angles they used. The correlations between the states they found
should follow the inequality in equation (13.6). If someone has been eavesdropping,
i.e. making any other kind of measurement, this will always destroy these correla-
tions, and equation (13.6) will not be obeyed.

Exercises from Chap. 14: Entropy, Complexity, and the Arrow of Time

14.1 Thermalisation and mixing timescales. The mass of a Nitrogen atom is
14.007 a.m.u, but a molecule is twice that. (a) The r.m.s. velocity is then v =√

(3kT/m) = 493 ms−1. Thermalisation will take place roughly on the timescale
it takes any one molecule to collide with another which is τ = λ/v ∼ 10−10 s. (b)
Mixing will happen on the timescale it takes for a typical molecules to diffuse from
the middle of one half to the other, i.e. L = 1.0m. We can assume the two isotopes
have more or less the same mass. Following Chap.6, the time to do a random walk
of net length L will be t = L2/2λv = 4.7 h. Much longer!

14.2 Thermalisation and mixing entropy changes. We have to be quite careful
about our definitions! For (a), the thermodynamic entropy is undefined before the
relaxation, but the statistical (Shannon) entropy increases; the Maxwell–Boltzmann
distribution is that which maximises the multiplicity of the macrostate. For (b), the
answer depends on whether the observer is capable of distinguishing the differ-
ence between the two isotopes. If they can distinginguish, the locational entropy
increases—the initial state is a highly unlikely one. If they cannot distinguish, the
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locational entropy stays the same. Note however that both observers agree that the
second law is obeyed—entropy will not spontaneously decrease.

14.3 Low pressure timescales. The mean free path should become 105 times
longer, i.e 5.9 cm.The thermalisation timescale gets longer—τ ∼ 0.1ms. Themixing
timescale however gets much faster—t ∼ 17ms—now quite comparable to thermal-
isation.

14.4 One percent fluctuations. The population of one compartment undergoes a
1D random walk with step size ±1. The distribution of populations for many sample
paths will be centred on N , but with Gaussian spread σ = √

nsteps. Half the paths
will end up outside ±0.67σ . If the final population is N ± x , then we are looking
for x/N = 0.01. So nsteps = (0.01N/0.67)2. For N = 1000, there is a 50% chance
of a 1% fluctuation after 223 steps, i.e. 0.2 s. For N = 106 we need 108 steps, which
takes 62 h. For N = 109 we need 7 thousand years. For N = 1012 we need 7 billion
years, half the age of the Universe. Considering that a gram of Nitrogen contains
about 1022 molecules, you can see that uneven distributions in practice never happen
spontaneously.

14.5 Probability asymmetry? The apparent asymmetry arises because we have
created an artificial initial condition—all paths start from the same x value—and
have then considered t = 1, 2, 3...with multiplying possibilities. However, we could
consider t = −1, and ask “what x-values could have led to the observed x value at
t = 0?”, and then for each of those, ask at t = −2, “what x-values could have led
to to the t = −1 values”, and so on. This would produce a set of paths diverging
backwards in time. The concepts of randomness and probability are therefore time
reversible, so this is not the origin of the arrow of time.

14.6 Communicating the arrow of time. Our understanding of gravity is via a
field theory. A change in gravitional field is communicated by disturbances in space-
time—this is not instantaneous, but travels at the speed of light. The cosmological
arrow of time proposes a global entropy gradient, but (so far at least) there is no
equivalent field theory, so it is not obvious how changes are communicated and
points far apart in space see the same arrow of time. Definitely a challenge for the
next generation of theorists!
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A
ARIMA process, 247
Arrangements, see Permutations
Arrow of time, 303

cosmological, 305
Artificial Intelligence, 201
Autogressive process, see Stochastic pro-

cesses

B
Bayes factor, 200
Bayesian evidence, see Marginalised likeli-

hood
Bayesian inference

Bayesian correlation testing, 167
updating credibility values, 118
with compound datasets, 128

Bayes’s formula, 11
use in updating credibilities, 118

Bell’s inequality, see Trivariate consistency
tests

Bernoulli process, 55
Binary search games, 211
Binomial distribution, 55

continuous approximation, 60
convergence to Gaussian, 80
hypergeometric distribution, 60
mean, 57
multinomial distribution, 61
negative binomial distribution, 60
Shannon entropy of, 216
variance, 58

Boltzmann distribution, 50, 293
Breit–Wigner profile, see Lorentzian distri-

bution
Brownian motion, 250

geometric brownian motion, 253

C
Cauchy distribution, 99

Lorentzian form, 101
moments of, 99

Central Limit Theorem, 78
Chi-squared, 130

critical values for parameter intervals,
153, 195

delta-chi-squared, 152
distribution, 131
goodness of fit, 152
using, 132
with individual errors, 133

Coefficient of variation, 28
Combinations, 44
Combinatorics, 41
Complexity, 299

Kolmogorov or algorithmic measure of,
299

Confidence testing, see Significance testing
Convolution, 77

convergence to Gaussian, 80
convergence to Lorentzian, 104
of Gaussian, 78
repeated, 78

Correlation, 161, 162
Bayesian correlation testing, 167
correlation coefficient, 164
correlation coefficient, Fishers’s z-
transform, 167

correlation coefficient, t-transform, 166
correlation testing pitfalls, 170
Kendal rank correlation coefficient, 169
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Spearman rank correlation coefficient,
168

Covariance, 29, 163
matrix, 29, 193

Credibility, 13
as probability of a hypothesis, 13

D
Damped random walk, see Ornstein–

Uhlenbeck process
Dependence, 26, 161

E
Entropy

and disorder, 298
and free energy, 288
and Shannon entropy, 291, 292
and the second law of Thermodynamics,
288

Boltzmann entropy, 289
Gibbs entropy, 291
in gravitating systems, 300
in Information theory, see Shannon
entropy

of a black hole, 302
subjectivity of, 296
Thermodynamic, 286

Equilibrium
and free energy, 294
and statistical entropy, 293
non-equilibrium thermodynamics, 295
relaxation times, 294

Ergodic assumption, 46, 294
Errors, 34, 88

bias, 34
evaluating, 35, 89
Gaussian, 89
Poisson, 88
propagating, 89
random, 35
systematic, 35

Expectation values, 29
algebra of, 30

Exponential distribution, 99

F
Free energy

Gibbs, 288, 289
Helmholtz, 288

Frequencies, 6
density, 8

normalised, 7

G
Gambler’s ruin problem, 109
Gaussian distribution, 69

as fixed point for convolution, 80
as limit of binomial, 80
as limit of Poisson, 81
bivariate, 83, 84
comparison with Lorentzian, 103
convolution of, 78
equivalence to Maxwell–Boltzmann, 86
log Gaussian, 86
mathematical origin, 75
moments, 73
observed universality, 71
physical origin, 75
Shannon entropy of, 220
standard form, 71
standard regions, 74
trivariate, 84
use as approximation, 82

H
Hidden variable theories, 272

tests of, 274, 275
Hypotheses, 115

asessing using absolute likelihood, 117
comparing using relative likelihood, 116
well framed, 116

I
Information, see Uncertainty
Information theory, 209

L
Lagrange multiplier method, 51, 228
Langevin equation, seeOrnstein–Uhlenbeck

process
Least squares fitting, 171

arbitrary function, 178
curvilinear function, 176
errors on parameters, 174
goodness of fit from chi-squared, 174
straight line, 172
straight line, with individual errors, 173

Likelihood, 116
Lorentzian Distribution, 101

as fixed point of convolution, 104
comparison with Gaussian, 103
relation to resonance, 102
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M
Macrostates and microstates, 45

connection with Shannon entropy, 224
in thermodynamic systems, 291
multiplicity, 46
multiplicity, maximising, 47, 48
multiplicity, maximising with con-
straints, 49

Marginalised likelihood, 119, 120, 198
Markov chains, 254

relation to Ehrenfest model of diffusion,
255

state probability vector, 255
transition matrix, 254

Maximum entropy method, 224
and macrostate multiplicity, 224
use in image sharpening, 226
use in setting priors, 225

Maxwell–Boltzmann, seeGaussian distribu-
tion

Mean, 27
confidence interval from t-statistic, 141
confidence interval from z-statistic, 141
error from sampling distribution, 140
maximum likelihood estimate, 143
of binomial, 57
weighted mean estimate, 144

Message transmission, 222
channel capacity, 222
compression, 223
Huffman coding, 223

Model comparison, 198
using Bayes factor, 200
using Δχ2, 198
using F-test, 199
using likelihood ratio test, 199

Model fitting, 184
amoeba method, 191
dependent versus independent variables,
184

experiment model, 185
goodness of fit, 152, 197
gradient search, 191
least squares line fitting, 171
Monte Carlo Markov Chain (MCMC)
method, 191

parameter space, 185, 186
sub-grid location with Gaussian approx-
imation, 146, 191

with χ2(θ), 151, 186
with P(θ), 145, 186
zig-zag search, 191

Model Parameter Intervals, see Parameter
estimation

Moments, 30
centred, 30
kurtosis, 31
skewness, 31

Moving average process, see Stochastic pro-
cesses

Mutual information, see Shannon entropy

O
Ornstein–Uhlenbeck process, 252

Black–Scholes model, 253
Vlasicek model, 252

P
Parameter estimation, 137

curvature method, 147, 192
estimate vs estimator, 139
intervals using Δχ2, 152, 194
maximum likelihood method, 142
maximum posterior method, 145
parameter intervals from P(θ), 148, 192
using chi-squared, 151, 194
usingGaussian approximation, 146, 191,
192
limits of, 195

using t-statistic, 141
using z-statistic, 141
with many parameters, 195
with one interesting parameter, 193
with two interesting and correlated
parameters, 194

with two interesting but uncorrelated
parameters, 193

Parameter space, seeModel Fitting
Pareto distribution, see Power-law distribu-

tions
Permutations, 42
Phase space, 291
Poisson distribution, 61

applications of, 64
convergence to Gaussian, 81
Shannon entropy of, 216
variance, 63

Poisson process, 97
leading to exponential distribution, 98
shot noise, 247

Posteriors, 119
Gaussian approximation to posterior dis-
tribution, 146, 191

joint posterior distribution, 185
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normalising, 120, 146, 147, 190
posterior odds ratio, 122

Power-law distributions, 104
approximated by log Gaussian, 107
approximated by Lorentzian, 107
from growth and survival processes, 108
from inverse quantities, 107
from random walk returns (gambler’s
ruin), 109

from self organised criticality, 109
from Yule process, 109
moments, 106
Pareto distribution, 104

Priors, 119
assigning, 119, 146
joint prior distribution, 185
using maximum entropy to assign, 225

Probability
as degree of belief, 13
as frequency, 6
continuous, 6
discrete, 6
of A and B, 10
of A or B, 11

Probability amplitudes, 266
and quantum states, 269
Dirac formalism, 269
in Stern Gerlach experiment, 271

Probability distribution, 8, 19
conditional, 23
cumulative distribution function (CDF),
9

marginal, 25
moments of, seeMoments
multivariate, 22
percentiles, 28
population distribution, 20
probability density function (PDF), 8
sample distribution, 20
sample distribution, binned, 21
transformations of, 32

Q
Quantum entanglement, 272

entangled spins, 273
EPR experiments, 274

Quantum interpretations, 279
Bohmian mechanics, 279
Decoherence theory, 280
many worlds, 279
Quantum Bayesianism, 280

R
Randomness, 5

as unpredictability, 3
subjective, 5

Random variables, 6
adding, 75

Random walk, 93, 233, 245
damped random walk, 245, 252
in momentum space, 96
one dimensional, 94
spreading rate, 96
three dimensional, 95

Regression, 171, 176
Reversibility

of physical laws, 303
of probability, 304
of thermodynamic systems, 288

S
Self organised criticality, 109
Shannon entropy, 213

cross entropy, 220
for binomial distribution, 216
for continuous distributions, 219
for Gaussian distribution, 220
for k-box system, 214
for Poisson distribution, 216
for two box system, 214
joint uncertainty/entropy, 217
Kullback–Leibler distance, 220
marginal uncertainty/entropy, 217
mutual uncertainty/information, 218

Shot noise, see Poisson process
Sigma clipping, 145
Significance testing, 122

acceptance and rejection classes, 123
alternative hypothesis, 123
Gaussian confidence regions, 125
null hypothesis, 123
one-tailed versus two-tailed tests, 123
P-values, 122

pitfalls, 126
test-statistics, 129
z-test, 125

Stirling’s formula, 44
Stochastic difference equation, 252
Stochastic processes, 241

autoregressive process, 244
autocorrelation function of, 246
structure function of, 247
variance of, 246

continuous, 249



Index 347

Levy, Wiener, Cauchy and Poisson pro-
cesses, 247

moving average process, 242
autocorrelation function of, 243
variance of, 242
with exponential filter, 243

purely random process, 241
stochastic calculus, 254

Subsets, see Combinations
Surprisal, see Uncertainty

T
Time series, 234

autocorrelation function, 237
characterising, 234
periodogram, 240
stationary vs non-stationary, 235
structure function, 236

Trivariate consistency tests, 275
Bell’s inequality, 276
Clauser et al. inequality, 277
Quantum theory prediction, 278

U
Uncertainty, 210

conditional, 212
connected with distribution , see Shan-
non entropy

Shannon measure of, 210
units of, 211

Uncertainty principle, 270
Unpredictability, 3

classical versus quantum, 261
in radioactivity, 263
in the two slit experiment, 263
intrinsic, 5
macroscopic effects of microscopic
unpredictability, 263

quantum key distribution, 265
random number generation, 264

V
Variance, 28

bias in sample variance, 139
maximum likelihood estimate, 143
of binomial, 58
of Poisson, 63

Vlasicek model, see Ornstein–Uhlenbeck
process

W
Waiting time distribution, see Exponential

distribution
Wave function, 268

collapse of, 270

Y
Yule process, see Power-law distributions
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